Sains Islam pada Zaman Pertengahan

Daripada Wikipedia, ensiklopedia bebas.
Lompat ke: pandu arah, cari
Sejarah sains
Libr0310.jpg
Latar belakang
Teori/sosiologi
Historiografi
Pseudosains
Mengikut zaman
Dalam budaya awal
Dalam Zaman Kuno Klasik
Pada Zaman Pertengahan
Pada Zaman Pembaharuan
Revolusi Saintifik
Mengikut topik
Sains semulajadi
Astronomi
Biologi
Kimia
Ekologi
Geografi
Geologi
Paleontologi
Fizik
Sains masyarakat
Ekonomi
Linguistik
Sains politik
Psikologi
Sosiologi
Teknologi
Sains pertanian
Sains komputer
Sains bahan
Perubatan
Laman pengemudian
Garis masa
Portal
Kategori


Dalam sejarah sains, sains Islam merujuk kepada sains yang dikembangkan dalam lingkungan tamadun Islam di antara abad ke-8 dan ke-16, sewaktu apa yang disebut sebagai Zaman Kegemilangan Islam.[1] Ia juga dikenali sebagai "sains Arab" kerana kebanyakan teks pada zaman itu ditulis dalam bahasa Arab, bahasa yang menjadi lingua franca tamadun Islam. Namun, bukan semua ahli sains pada zaman itu Muslim atau Arab. Sebilangan ahli sains terkemuka yang menyumbang kepada sains dalam tamadun Islam bukan berketurunan Arab (yang paling terkemuka ialah orang Parsi), dan ada juga ahli sains yang bukan Muslim.[2]

Ada beberapa pandangan berlainan di kalangan sejarawan sains berkaitan sains Islam . Pandangan traditional, contohnya pandangan yang dipegang Bertrand Russell,[3] memegang bahawa sains Islam, sementara mengkagumkan dalam banyak cara, berkurangan tenaga intelek yang diperlukan untuk membuat inovasi, dan nilai utamanya ialah sebagai penyimpan ilmu kuno dan pengirim kepada Eropah Zaman Pertengahan. Para pengulang kaji seperti Abdus Salam[4] dan George Saliba,[5] pula berpegang bahawa suatu Revolusi saintifik Islam muncul sewaktu Zaman Pertengahan,[6][7] satu ungkapan yang digunakan para sarjana seperti Donald Routledge Hill dan Ahmad Y Hassan untuk menyatakan pandangan bahawa Islam merupakan daya pendorong pencapaian orang Islam.[8] Robert Briffault, seorang sezaman dengan Russell, pula melihat sains Islam sebagai pengasas sains moden.[9] Pandangan pengajian terkini seperti ditonjolkan Toby E. Huff,[10][11] Will Durant,[12] Fielding H. Garrison,[13] Muhammad Iqbal[14] Hossein Nasr dan Bernard Lewis,[15] ialah para ahli sains Islam menyumbang kepada pengasasan sains bereksperimen melalui sumbangan mereka kepada kaedah saintifik serta pendekatan empirik, bereksperimen dan kuantitatif yang dibawa kepada penyelidikan, mahupun usaha mereka tidak boleh dikatakan suatu revolusi sains,[10] seperti yang telah berlaku pada zaman awal Eropah moden yang membawa kepada kemunculan sains moden,[16][17] melainkan Kitab Optik karya Ibn Al-Haitham yang dianggap ramai sebagai satu revolusi dalam bidang optik dan persepsi penglihatan.[18][19][20][21][22][23]

Gambaran keseluruhan[sunting | sunting sumber]

Kebangkitan[sunting | sunting sumber]

Maklumat lanjut: Zaman Kegemilangan Islam

Sarjana Islam pada Zaman Pertengahan

Sewaktu penaklukan awal Islam, tentera Arab Muslim, yang pada asasnya dipimpin oleh Khalid ibn al-Walid, menakluki Empayar Parsi Sassanid dan lebih dari setengah Empayar Byzantine (ataupun "Rom"), dan mendirikan Empayar Arab sepanjang Timur Tengah, Asia Tengah, dan Afrika Utara, diikuti pengembangan selanjutnya di sepanjang Pakistan, Itali selatan dan Semenanjung Iberia. Oleh sebab itu, kerajaan-kerajaan Islam mewarisi ilmu dan kemahiran Timur Tengah silam, Greece, Parsi dan India [24]

Seni pembuatan kertas diperoleh daripada banduan China dalam Pertempuran Talas (751 M), dan ini membawa kepada pembinaan kincir kertas di Samarkand dan Baghdad. Orang Arab memperbaiki teknik-teknik China dengan menggunakan kain buruk linen yang diperbuat daripada kulit kayu kertau (mulberi).

Ahli Sains Arab dan ahli sains Iran tinggal dan mengamalkan ilmu masing-masing di tanah jajahan Islam sewaktu Zaman Kegemilangan Islam, walaupun bukan semua ahli sains dalam tamadun Islam berbangsa Arab atau beragama Islam. Sesetengah sarjana membantah penggunaan istilah "Arab-Islam" kerana dirasakan istilah itu tidak menggambarkan kepelbagaian para sarjana Timur yang telah menyumbang kepada sains pada zaman itu.[25]

Sewaktu Zaman Kegemilangan Islam, para sarjana Islam membuat pengembangan penting kepada sains, matematik, perubatan, ilmu falak, kejuruteraan, dan bidang-bidang lain. Sewaktu ini, falsafah Islam awal berkembang dan sering memainkan peranan pangsi dalam perdebatan saintifik — tokoh-tokoh utama, biasanya ahli sains dan ahli falsafah.

Bilangan karya penting dan asli Arab yang ditulis dalam bidang sains matematik adalah lebih besar daripada jumlah gabungan karya Bahasa Latin dan Bahasa Yunani dalam bidang yang sama.[26]

Institusi saintifik[sunting | sunting sumber]

Lihat: Madrasah, Bimaristan dan Ilmu falak Islam

Terdapat beberapa institusi penting yang tidak wujud pada zaman kuno diasaskan dalam dunia Islam Zaman Pertengahan: contoh-contoh utama termasuklah hospital awam (yang menggantikan kuil penyembuhan dan kuil tidur)[27] dan hospital psikiatri,[28] Perpustakaan awam dan perpustakaan pinjaman, universiti yang mengurniakan ijazah, dan balai cerap ilmu falak yang berfungsi sebagai institut penyelidikan[27] (berlainan dengan pos pemerhatian peribadi yang terdapat dalam zaman kuno),[29] dan Waqaf.[30][31]

Universiti-universiti pertama yang mengeluarkan diploma ialah hospital-universiti Bimaristan dunia Islam dalam Zaman Pertengahan. Institusi-institusi ini mengurniakan diploma perubatan kepada penuntut-penuntut perubatan Islam yang layak menjadi pengamal perubatan dalam kurun ke-9.

Sir John Bagot Glubb menulis:[32]

"Sekolah-sekolah perubatan sangat aktif di Baghdad setibanya zaman Ma'mun. Hospital awam percuma pertama dibuka di Baghdad pada zaman pemerintahan Khalifah Harun al-Rashid. Dengan pembangunan sistem ini, para pakar perubatan dan pembedahan dilantik sebagai pensyarah kepada penuntut perubatan dan mengurniakan diploma kepada mereka yang dikira layak menjadi pengamal perubatan. Hospital pertama di Mesir dibuka pada tahun 872 M dan selepas itu hospital-hospital awam dibuka di seluruh empayar Islam, dari Al-Andalus dan Maghreb hinggalah ke wilayah Parsi."

Universiti Al-Karaouine di Fez, Maghribi, yang ditubuhkan pada tahun 859 M diiktiraf Buku Rekod Dunia Guinness sebagai universiti tertua di dunia.[33] Universiti Al-Azhar yang ditubuhkan di Kaherah, Mesir pada abad ke-10, menawarkan beberapa ijazah akademik termasuklah ijazah pascasiswazah, dan dianggap universiti penuh yang pertama.

Beberapa ciri tersendiri perpustakaan moden diperkenalkan dalam dunia Islam. Perpustakaan bukan sahaja merupakan kumpulan manuskrip lama seperti pada zaman kuno, tetapi juga berfungsi sebagai perpustakaan awam dan pinjaman, pusat pendidikan dan penyebaran sains dan idea, tempat mesyuarat dan muzakarah, dan kadangkala sebagai rumah pertumpangan para sarjana atau murid. Konsep katalog perpustakaan juga diperkenalkan di dalam perpustakaan Islam Zaman Pertengahan, dan buku-buku disusun mengikut genre dan kategori tertentu.[34]

Satu ciri yang sering terdapat pada Zaman Keemasan Islam ialah jumlah besar orang Islam yang pakar dalam pelbagai bidang (polymath) ataupun "orang bergeliga" yang menyumbang dalam pelbagai bidang. Mereka ini dikenali sebagai Hakim dan mereka memiliki ilmu meluas dalam beberapa bidang agama dan sekular, setanding dengan tokoh-tokoh Zaman Pembaharuan seperti Leonardo da Vinci. Sarjana pelbagai bidang sering ditemui semasa Zaman Keemasan Islam sehinggakan sukar mencari seorang sarjana yang pakar hanya dalam satu bidang kajian. [35] Tokoh-tokoh genius atau polymath ini termasuklah, antara lain, Al-Biruni, Al-Jahiz, Al-Kindi, Abu Bakr Muhammad Al-Razi, Ibnu Sina, Al-Idrisi, Ibnu Bajjah (Avempace), Ibnu Zuhr, Ibnu Tufayl, Ibnu Rushd, Al-Suyuti[36] Abu Musa Jabir bin Hayyan (Geber), Al-Khawarizmi, Banu Musa, Abbas Ibn Firnas, Al-Farabi, Al-Masudi, Al-Muqaddasi, Ibnu Al-Haytham (Alhazen), Omar Khayyam, Al-Ghazali, Al-Khazini, Al-Jazari, Al-Nafis, Al-Tusi, Ibn al-Shatir, Ibnu Khaldun, dan Taqi Al-Din.[35]

Kemerosotan[sunting | sunting sumber]

Lihat juga: Zaman Kegemilangan Islam:Kemerosotan

Dipercayai sains Islam mula merosot pada abad ke-12 dan ke-13 ‐ walaupun tamadun Islam pada masa itu masih menghasilkan ahli sains, hakikat ini lebih pengecualian daripada kebiasaan. Namun, mahupun zaman ini disebut "zaman kemerosotan" sains Islam, dari segi ilmu falak, ia sebenarnya zaman yang amat berdaya keluarannya di mana teori-teori ilmu falak yang bermutu tinggi dihasilkan. Karya Ibn al-Shatir (1304–1375 M) di Damsyik menjadi contoh yang menarik.[37][38] Keadaan demikian juga terdapat dalam bidang-bidang lain seperti perubatan dengan karya-karya Ibn al-Nafis dan Serafeddin Sabuncuoglu, dan sains sosial dengan Ibnu Khaldun dan Muqaddimahnya (1370 M). Malah, Muqaddimah sendiri mencatatkan keadaan ini, dengan menyatakan bahawa sains merosot di Iraq, Al-Andalus dan Maghreb, tetapi berkembang di Parsi, Syria dan Mesir.[39]

Satu faktor yang diutarakan sebagai penyebab kemerosotan ini ialah cabaran terhadap teologi rasional Muktazilah oleh teologi ortodoks Ash'ari seperti yang ditonjolkan dalam kitab Tahafut al-falasifa ("Ketakpaduan Ahli Falsafah") hasil penulisan Imam Al-Ghazali. Tafsiran ini diutarakan Ignaz Goldziher, ahli Orientalis Yahudi dari Hungary yang mempercayai bahawa terdapat penentangan di antara teologi ortodoks dengan sains yang dipengaruhi adat serta pemikiran Yunani. [40] Namun, kesarjanaan baharu mencabar pandangan tradisional ini. Beberapa sarjana menunjukkan bahawa aliran teologi Ash'ari sebenarnya menyokong sains dan hanya membangkang falsafah spekulatif, dan beberapa ahli sains agung Islam seperti Ibn al-Haitham, al-Biruni, Ibn al-Nafis and Ibn Khaldun merupakan penganut teologi Ash'ari.[36][39] Emilie Savage-Smith juga menyatakan bahawa pandangan positif Imam al-Ghazali terhadap bidang perubatan, khususnya anatomi, menggalakkan ahli perubatan Islam seperti Ibn Zuhr (Avenzoar) dan Ibn al-Nafis untuk melakukan diseksi pada abad-abad ke-12 dan ke-13.[41]

Penyebab-penyebab lain kemorosatan sains termasuk persengketaan antara orang Islam ahli Sunnah dengan Syiah, dan pencerobohan terhadap tanah air orang Islam oleh tentera Salib dan Mongol antara kurun ke-11 dan ke-13, khususnya pencerobohan Mongol dalam kurun ke-13. Pihak Mongol memusnahkan perpustakaan, balai cerap, hospital dan universiti Islam, berpuncak dengan pemusnahan Baghdad pada tahun 1258 M. Baghdad merupakan ibu negeri Kekhalifahan Abbasiyyah serta pusat intelek Islam dan kemusnahannya dianggap sebagai titik berakhirnya Zaman Kegemilangan Islam.[42]

Bermula pada abad ke-13, beberapa orang Islam berpandangan tradisional menganggap pencerobohan tentera Salib dan Mongol sebagai hukuman yang diturunkan ke atas orang Islam kerana mereka telah menyimpang daripada Sunnah, satu pendirian yang juga disokong oleh seorang polymath termasyhur, Ibn al-Nafis.[43] Dipercayai bahawa pandangan tradisional sedimikian serta perang dan persengketaan telah mewujudkan keadaan yang membuat sains Islam kurang berdaya berbanding waktu terdahulu. Namun, Y Ziedan telah menunjukkan bahawa penjarahan Baghdad pada tahun 1258 M telah disusuli oleh usaha saintifik gigih di Damsyik dan Kaherah, kerana ramai para sarjana Islam menghasilkan ensiklopedia (termasuk ensiklopedia perubatan sebesar 80 jilid oleh Ibn al-Nafis) dalam usaha mereka memelihara khazanah ilmu saintifik Islam dan bagi meringankan kesan kehilangan Baghdad.[44]

Satu lagi faktor yang dikemukakan sebagai penyebab kemerosatan sains Islam ialah kitaran ekuiti (kitaran kesaksamaan) berdasarkan model masyhur Asabiyyah (kebangkitan dan kemerosotan tamadun) Ibnu Khaldun yang menyatakan bahawa kemerosotan itu ekoran kesan ekonomi dan politik dan bukan agama.[39]

Pengaruh pada sains Eropah[sunting | sunting sumber]

Contributing to the growth of European science was the major search by European scholars for new learning which they could only find among Muslims, especially in Islamic Spain and Sicily. These scholars translated new scientific and philosophical texts from Arabic into Latin.

One of the most productive translators in Spain was Gerard of Cremona, who translated 87 books from Arabic to Latin,[45] including Muhammad ibn Mūsā al-Khwārizmī's On Algebra and Almucabala, Jabir ibn Aflah's Elementa astronomica,[46] al-Kindi's On Optics, Ahmad ibn Muhammad ibn Kathīr al-Farghānī's On Elements of Astronomy on the Celestial Motions, al-Farabi's On the Classification of the Sciences,[47] the chemical and medical works of Razi,[48] the works of Thabit ibn Qurra and Hunayn ibn Ishaq,[49] and the works of Arzachel, Jabir ibn Aflah, the Banū Mūsā, Abū Kāmil Shujā ibn Aslam, Abu al-Qasim, and Ibn al-Haytham (including the Book of Optics).[45]

Other Arabic works translated into Latin during the 12th century include the works of Muhammad ibn Jābir al-Harrānī al-Battānī and Muhammad ibn Mūsā al-Khwārizmī (including The Compendious Book on Calculation by Completion and Balancing),[46] the works of Abu al-Qasim (including the al-Tasrif),[50][45] Muhammad al-Fazari's Great Sindhind (based on the Surya Siddhanta and the works of Brahmagupta),[51] the works of Razi and Avicenna (including The Book of Healing and The Canon of Medicine),[52] the works of Averroes,[50] the works of Thabit ibn Qurra, al-Farabi, Ahmad ibn Muhammad ibn Kathīr al-Farghānī, Hunayn ibn Ishaq, and his nephew Hubaysh ibn al-Hasan,[53] the works of al-Kindi, Abraham bar Hiyya's Liber embadorum, Ibn Sarabi's (Serapion Junior) De Simplicibus,[50] the works of Qusta ibn Luqa,[54] the works of Maslamah Ibn Ahmad al-Majriti, Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, and al-Ghazali,[45] the works of Nur Ed-Din Al Betrugi, including On the Motions of the Heavens,[55][48] Ali ibn Abbas al-Majusi's medical encyclopedia, The Complete Book of the Medical Art,[48] Abu Mashar's Introduction to Astrology,[56] the works of Maimonides, Ibn Zezla (Byngezla), Masawaiyh, Serapion, al-Qifti, and Albe'thar.[57] Abū Kāmil Shujā ibn Aslam's Algebra,[46] the chemical works of Geber, and the De Proprietatibus Elementorum, an Arabic work on geology written by a pseudo-Aristotle.[48] By the beginning of the 13th century, Mark of Toledo translated the Qur'an and various medical works.[58]

Fibonacci presented the first complete European account of the Hindu-Arabic numeral system from Arabic sources in his Liber Abaci (1202).[48] Al-Khazini's Zij as-Sanjari was translated into Greek by Gregory Choniades in the 13th century and was studied in the Byzantine Empire.[59] The astronomical corrections to the Ptolemaic model made by al-Battani and Averroes and the non-Ptolemaic models produced by Mo'ayyeduddin Urdi (Urdi lemma), Nasīr al-Dīn al-Tūsī (Tusi-couple) and Ibn al-Shatir were later adapted into the Copernican heliocentric model. Al-Kindi's (Alkindus) law of terrestrial gravity influenced Robert Hooke's law of celestial gravity, which in turn inspired Newton's law of universal gravitation. Abū al-Rayhān al-Bīrūnī's Ta'rikh al-Hind and Kitab al-qanun al-Mas’udi were translated into Latin as Indica and Canon Mas’udicus respectively. Ibn al-Nafis' Commentary on Compound Drugs was translated into Latin by Andrea Alpago (d. 1522), who may have also translated Ibn al-Nafis' Commentary on Anatomy in the Canon of Avicenna, which first described pulmonary circulation and coronary circulation, and which may have had an influence on Michael Servetus, Realdo Colombo and William Harvey.[60] Translations of the algebraic and geometrical works of Ibn al-Haytham, Omar Khayyám and Nasīr al-Dīn al-Tūsī were later influential in the development of non-Euclidean geometry in Europe from the 17th century.[61][62] Ibn Tufail's Hayy ibn Yaqdhan was translated into Latin by Edward Pococke in 1671 and into English by Simon Ockley in 1708 and became "one of the most important books that heralded the Scientific Revolution."[63] Ibn al-Baitar's Kitab al-Jami fi al-Adwiya al-Mufrada also had an influence on European botany after it was translated into Latin in 1758.[64]

Kaedah saintifik[sunting | sunting sumber]

Para ahli sains Islam lebih menitikberatkan ujikaji daripada para pengkaji tamadun purba sebelum mereka (misalnya, ahli falsafah Yunani lebih cenderung kepada kerasionalan berbanding empirisisme). [9][12] Sikap ini berpunca daripada pemerhatian empirik yang terkandung di dalam Al-Qur'an dan Sunnah [65][66][67][68] dan kaedah ketat sejarah yang diasaskan dalam kajian hadith.[65] Justeru, para saintis Islam menggabungkan pemerhatian persis, ujikaji terkawal dan catatan yang terperinci.[12] dengan pendekatan baru terhadap siasatan saintifik, yang membawa kepada perkembangan [9] kaedah saintifk.[69] Khususnya, pemerhatian empirik Ibn Al-Haitham (Alhazen) yang tercatat di dalam bukunya berjudul Kitab Optik (1021 M) dilihat sebagai permulaan kaedah saintifik moden,[70] yang mula-mula diperkenalkan beliau kepada optik dan psikologi. Rosanna Gorini menulis:

"Mengikut kebanyakkan ahli sejarah, Al-Haitham ialah peneroka kaedah saintifik moden melalui bukunya. Dia menukar makna istilah optik dan mengasaskan ujikaji ataupun eksperimen sebagai norma pembuktian dalam bidang itu. Ujikajinya tidak berlandaskan teori-teori mujarad, tetapi berdiri di atas bukti-bukti ujikaji, dan ujikajinya teratur dan dapat diulangi."[69]

Kaedah-kaedah awal ujikaji dibangunkan oleh Jabir (bagi kimia), Imam Al-Bukhari (bagi sejarah dan sains hadith),[65] Al-Kindi (bagi Sains Bumi),[71] Ibnu Sina (bagi perubatan), Al-Biruni (bagi ilmu falak dan mekanik),[72] Ibn Zuhr (bagi pembedahan)[73] dan Ibnu Khaldun (bagi sains sosial).[74] Pengubahan terpenting kaedah sains, yakni penggunaan ujikaji dan pengkuantitian untuk membezakan teori-teori saintifik yang secara amnya empirik tetapi bersaing, diperkenalkan oleh ahli sains Islam.

Ibn Al-Haitham, peneroka optik moden,[75] menggunakan kaedah saintifik untuk memperoleh hasil yang tercatat di dalam bukunya, Kitab Optik. Khususnya beliau menggabungkan pemerhatian, ujikaji dan hujah-hujah rasional bagi menunjukkan yang teori moden intromisinya (penyusupan) berkaitan penglihatan, di mana pancaran cahaya dikeluarkan oleh objek dan bukannya mata, ialah betul dari segi sains, dan teori kuno yakni teori pancaran cahaya yang didokong Ptolemy dan Euclid (di mana mata memancarkan cahaya), dan teori kuno intromisi yang didokong Aristotle (di mana objek memancarkan zarah fizikal kepada mata) adalah salah kedua-duanya. [76] Diketahui umum bahawa Roger Bacon maklum akan usaha kerja Ibnu Al-Haytham.

Ibn Al-Haitham membangunkan kaedah ketat ujikaji yang menggunakan ujian saintifik terkawal bagi memastikan hipotesis teori dan mengesahkan terkaan (konjektur) induktif.[77]

Kaedah saintifik Ibn Al-Haitham sama dengan kaedah saintifik moden dengan erti kata kedua-dua mengandungi prosedur-prosedur berikut:[78]

  1. Pemerhatian
  2. Pernyataan masalah
  3. Perumusan hipotesis
  4. Pengujian hipotesis dengan ujikaji
  5. Kajian hasil ujikaji
  6. Tafsiran data dan perumusan kesimpulan
  7. Penerbitan hasil kajian

Pembangunan kaedah saintifik dianggap sangat dasar dan penting bagi sains moden dan ada beberapa pihak — ahli falsafah sains dan ahli sains — menganggap kajian-kajian alam awal sebagai "pra-saintifik." Oleh sebab itu Ibn Al-Haitham dianggap ahli sains "pertama."[79] Di dalam bukunya berjudul Model Pergerakan, Ibn Al-Haitham juga menggambarkan versi awal Occam's razor, di mana beliau menggunakan hipotesis minimal berkaitan sifat-sifat pergerakan cakerawala, dalam usaha beliau mengeluarkan hipotesis kosmologi yang tidak didokong oleh pemerhatian dari bumi daripada model planet beliau.[80]

Robert Briffault menulis di dalam bukunya, Pembuatan Kemanusiaan:[9]

"Hutang sains kita dengan sains Arab bukan dalam bentuk penemuan yang mengejutkan atau teori-teori revolusioner; sains berhutang lebih banyak daripada itu dengan budaya Arab, ia berhutang kewujudannya. Dunia purba, seperti yang dapat kita lihat, ialah pra-saintifik. Ilmu falak dan matematik Yunani merupakan import asing yang tidak pernah betul-betul menyerapi kebudayaan Yunani. Orang Yunani membuat sistem, memperumumkan dan membuat teori, akan tetapi cara penyelidikan yang sabar, pengumpulan ilmu, kaedah rapi sains, pemerhatian terperinci dan yang memakan masa lama, penyelidikan ujikaji, kesemuanya asing kepada perangai ataupun temperamen Yunani. [...] Apa yang kita dipanggil sains timbul di Eropah hasil daripada semangat baru, cara-cara penyelidikan baharu, kaedah membuat ujikaji, pemerhatian, pengukuran, pembangunan matematik dalam bentuk yang asing kepada Yunani. Semangat dan kaedah-kaedah itu diperkenalkan kepada Eropah oleh orang Arab."
"Sains ialah sumbangan terbesar orang Arab kepada dunia moden tetapi mengambil masa yang lama untuk menghasilkan buah. Tidak lama selepas kebudayaan Moor tenggelam dalam kegelapan baharulah muncul gergasi kelahirannya. Bukan sains sahaja yang menghidupkan semula Eropah. Banyak pengaruh daripada tamadun Islam memancarkan cahaya awal ke atas kehidupan Eropah."[81]

George Sarton pula menulis di dalam Pengenalan kepada Sejarah Sains:

"Kejayaan utama, dan yang paling tidak ketara, Zaman Pertengahan ialah pembetukan semangat ujikaji dan ini pada sebahagian besarnya disebabkan orang Islam hingga ke abad ke-12."[82]

Oliver Joseph Lodge menulis di dalam Peneroka-peneroka Sains:

"Hubungan efektif tunggal antara sains lama dan baharu diberikan orang Arab. Zaman Gelap (Zaman Pertengahan) merupakan lompang dalam sejarah sains di Eropah, dan selama seribu tahun tidak wujud seorang ahli sains yang ternama melainkan di dalam empayar Arab."[83]

Semakan setara[sunting | sunting sumber]

Gambaran pertama proses semakan setara yang didokumentasi dapat diketemu di dalam Etika Doktor karya Ishaq bin Ali Al-Rahwi 854–931 M) dari Al-Raha Syria, yang menggambarkan proses pertama semakan setara perubatan. Karya beliau, serta manual perubatan Arab terkemudian, menyatakan bahawa seseorang doktor pelawat mesti membuat nota pendua tentang keadaan pesakit pada setiap lawatan. Apabila pesakit sembuh atau meninggal dunia, nota-nota doktor akan disemak oleh satu majlis terdiri daripada para doktor bagi memastikan rawatan bersesuaian telah diberikan oleh doktor dan sama ada prestasinya menepati piawai bagi penjagaan pesakit. Sekiranya semakan mereka negatif, maka doktor tersebut mungkin menghadapi tindakan undang-undang daripada pesakit yang tidak mendapat rawatan bersesuaian.[84]

Sains gunaan[sunting | sunting sumber]

Maklumat lanjut: Inventions in the Muslim world Revolusi Pertanian Islam Timeline of Muslim scientists and engineers

Fielding H. Garrison wrote in the History of Medicine:

"The Saracens themselves were the originators not only of algebra, chemistry, and geology, but of many of the so-called improvements or refinements of civilization, such as street lamps, window-panes, firework, stringed instruments, cultivated fruits, perfumes, spices, etc..."[13]

In the applied sciences, a significant number of inventions and technologies were produced by medieval Muslim scientists and engineers such as Abbas Ibn Firnas, Taqi al-Din, and particularly al-Jazari, who is considered a pioneer in modern engineering.[85] Some of the inventions believed to have come from the medieval Islamic world include the programmable automaton,[86] coffee, the soap bar, shampoo, pure distillation, liquefaction, crystallisation, purification, oxidisation, evaporation, filtration, distilled alcohol, uric acid, nitric acid, alembic, the crankshaft, the valve, the reciprocating suction piston pump, mechanical clocks driven by water and weights, the combination lock, quilting, the pointed arch, the scalpel, the bone saw, forceps, surgical catgut, the windmill, inoculation, the fountain pen, cryptanalysis, frequency analysis, the three-course meal, stained glass and quartz glass, Persian carpet, the modern cheque, the celestial globe, explosive rockets and incendiary devices, the torpedo, and artificial pleasure gardens.[87]

Sains pertanian[sunting | sunting sumber]

Maklumat lanjut:Revolusi Pertanian Islam dan Geografi Islam

Pada waktu Revolusi Pertanian Islam para ahli sains Islam membuat kemajuan besar dalam bidang botani dan meletakkan asas sains pertanian. Ahli botani dan pertanian Islam mempamerkan pengetahuan agronomi, teknik pertanian dan ekonomi termaju dalam bidang-bidang seperti meteorologi, kaji iklim, hidrologi, penggunaan tanah, dan ekonomi serta pengurusan pengusahaan pertanian. Mereka menunjukkan pengetahuan pertanian dalam bidang-bidang seperti pedologi tanah (kajian saintifik tentang pembentukan, ciri dan penggunaan tanah), ekologi pertanian, pengairan, persiapan tanah, penanaman, pembajaan, pencantuman, pemangkasan, fitoterapi, penjagaan dan pemeliharaan kultur dan tumbuhan, dan penuaian serta pengstoran tanaman.[88]

Al-Dinawari (828-896 M) dianggap pengasas botani Arab kerana di dalam bukunya Kitab Tumbuhan, beliau menggambarkan sekurang-kurangnya 637 jenis tumbuhan dan membincangkan evolusi tumbuhan dari lahir sehingga kematian, menggambarkan fasa ketumbuhan tanaman dan fasa bunga serta buah.[89]

Pada kurun ke-13, ahli biologi Al-Andalus Abu Al-Abbas Al-Nabati memabangunkan kaedah saintifik awal bagi botani, dengan memperkenalkan teknik empirik dan bereksperimen dalam pengujian, penggambaran dan pengenalan pelbagai materia medika, serta mengasingkan laporan yang tidak ditentusahkan daripada laporan yang disokong ujian dan pemerhatian.[90] Muridnya Ibn Al-Baitar menerbitkan Kitab al-Jami fi al-Adwiya al-Mufrada, yang dianggap himpunan botani terhebat dalam sejarah, dan merupakan bahan rujukan botani untuk waktu berkurun-kurun lamanya. Ia mengandungi butiran berkenaan sekurang-kurangnya 1,400 jenis tumbuhan, makanan, dan ubat. 300 daripada bahan yang terkandung di dalam kitab itu merupakan penemuan nya sendiri. Karya Ibn Al-Baitar berpengaruh di Eropah selepas terjemahnya ke dalam Latin dalam tahun 1758 M.[91][64]

Perubatan[sunting | sunting sumber]

Maklumat lanjut: Perubatan Islam dan Bimaristan

al-Zahrawi (Abulcasis), seorang peneroka pembedahan moden.

Para pakar perubatan Islam membuat banyak kemajuan serta sumbangan dalam bidang-bidang perubatan, termasuk anatomi, patologi, oftalmologi, sains-sains farmaseutik termasuk farmasi dan farmakologi, fisiologi dan pembedahan. Doktor-doktor Islam menubuhkan hospital khusus yang terawal sewaktu terjadinya Perang Salib, yang mengilhamkan pembinaan hospital yang sama di Eropah.[92]

Al-Kindi menulis De Gradibus, di mana beliau buat pertama kalinya menunjukkan penggunaan pengkuantitian dan matematik dalam perubatan, khususnya dalam bidang farmakologi. Ini termasuk pembangunan skala matematik bagi pengkuantitian kekuatan ubat, serta satu aturcara yang dapat membolehkan para doktor menentukan hari-hari kritikal sesuatu penyakit dari awal.[93] al-Razi (Rhazes) (865-925 M), seorang pelopor pediatrik,[94] mencatatkan kes-kes klinikal yang ditemukan dan memberikan catatan yang amat berguna tentang pelbagai penyakit. Bukunya Kitab Menyeluruh berkaitan Perubatan (al-Hawi الحاوي) yang memperkenalkan campak dan cacar, sangat berpengaruh di Eropah. Dalam kitab Syak terhadap Galen (Shukuk 'ala alinusor), al-Razi juga yang pertama membuktikan, melalui penggunaan ujikaji, bahawa teori humor Galen dan teori unsur klasik Aristotle silap.[95] Beliau juga memperkenalkan urinalisis dan ujian najis.[96]

al-Zahrawi (Abulcasis), yang dianggap pelopor pembedahan moden,[97] menulis Al-Tasrif (Kaedah Perubatan) (c. 1000 M), ensiklopedia sebesar 30 jilid yang diajarkan di sekolah-sekolah perubatan Islam dan Eropah sehingga kurun ke-17. Beliau mencipta pelbagai peralatan pembedahan, termasuk alat pertama yang khusus bagi wanita,[98] disamping kegunaan catgut dan forceps dalam pembedahan, ligatur, jarum bedah, skalpel, kuret, retraktor, sudu bedah, sound, cangkuk bedah, rod bedah, dan spekula,[99] gergaji tulang,[87] dan plaster.[100]

Pada tahun 1021 M, Ibn al-Haitham (Alhazen) membuat kemajuan penting dalam pembedahan mata, semasa beliau mengkaji dan dengan tepatnya menjelaskan jujukan penglihatan dan persepsi penglihatan buat kali pertamanya dalam buku beliau, Kitab Optik (c. 1021 M).[98]

Ibn Zuhr (Avenzoar) dianggap pelopor pembedahan bereksperimen, [101] oleh sebab memperkenalkan kaedah ujikaji ke dalam pemebedahan pada kurun ke-12 – beliau yang pertama menggunakan ujian terhadap binatang bagi menguji tatacara pembedahan sebelum melakukannya ke atas manusia.[73] He also performed the first dissections and postmortem autopsies on both humans as well as animals.[102]

In 1242, Ibn al-Nafis, yang dianggap pelopor fisiologi kardiovaskular [103] merupakan yang pertama menggambarkan sistem edaran pulmonari dan edaran koronari,[104] yang menjadi asas sistem peredaran (sistem darah, pembuluh darah, limfa, dan jantung yang berkaitan dengan peredaran darah dan limfa); kerana itu beliau dianggap seorang daripada ahli fisiologi terunggul dalam sejarah.[105] Beliau juga menggambarkan konsep terawal berkaitan metabolisme,[106] dan membangunkan aturcara fisiologi dan psikologi baharu mbagi menggantikan sistem Ibnu Sina dan Galen, disamping menyangkal teori mereka tentang [[humor], Denyutan,[107] tulang, otot, usus, organ deria, hempedu kanal, esofagus, perut, dan lain-lain.[108]

Ibn al-Lubudi (1210-1267 M) menolak teori Empat Humor yang disokong Galen dan Hippocrates, menemukan hakikat bahawa tubuh dan pemeliharaannya bergantung secara ekslusif pada darah, menolak idea Galen bahawa wanita dapat mengeluarkan sperma, dan menemukan bahawa pergerakan arteri tidak bergantung pada pergerakan jantung, bahawa jantung ialah oragn pertama yang terbentuk di dalam tubuh janin (dan bukannya otak seperti dikatakan Hippocrates), dan tulang yang membentuk tengkorak dapat menjadi tumor.[109]

Tashrih al-badan (Anatomi tubuh badan) karya Mansur ibn Ilyas (c. 1390 M) mengandungi rajah-rajah lengkap berkaitan sistem struktur tubuh, saraf dan peredaran darah.[110] Semasa berlakunya plag bubonik (Black Death) di Al-Andalus dalam kurun ke-14, Ibn Khatima and Ibn al-Khatib memberi hipotesis bahawa penyakit berjangkit disebabkan "entiti yang menular" yang memasuki tubuh badan manusia.[111]

Pembaharuan-pembaharuan perubatan lain yang asalnya dengan ahli perubatan Islam termasuk penemuan sistem imun, penggunaan ujian terhadap binatang, dan pemaduan perubatan dengan sains-sains lain (pertanian, botani, kimia, dan farmakologi),[98] disamping perekaan picagari Suntikan (perubatan) oleh Ammar ibn Ali al-Mawsili di [[Iraq} dalam abad kesembilan, farmasi di Baghdad (754 M), perbezaan antara perubatan dengan farmasi pada kurun ke-12, dan penemuan sekurang-kurangnya 2,000 bahan perubatan dan kimia.[112]

Avicenna, who was a pioneer of experimental medicine and was also an influential thinker and medical scholar,[92] wrote The Canon of Medicine (1025) and The Book of Healing (1027), which remained standard textbooks in both Muslim and European universities until at least the 17th century. Avicenna's contributions include the introduction of systematic experimentation and quantification into the study of physiology,[113] the discovery of the contagious nature of infectious diseases, the introduction of quarantine to limit the spread of contagious diseases, the introduction of experimental medicine,[114] evidence-based medicine, clinical trials,[115] randomized controlled trials,[116][117] efficacy tests,[118][119] and clinical pharmacology,[120] the importance of dietetics and the influence of climate and environment on health,[121] the distinction of mediastinitis from pleurisy, the contagious nature of phthisis and tuberculosis, the distribution of diseases by water and soil, and the first careful descriptions of skin troubles, sexually transmitted diseases, perversions, and nervous ailments,[92] as well the use of ice to treat fevers, and the separation of medicine from pharmacology, which was important to the development of the pharmaceutical sciences.[98]

Formal sciences[sunting | sunting sumber]

Logic[sunting | sunting sumber]

Early Islamic law placed importance on formulating standards of argument, which gave rise to a novel approach to logic in Kalam, but this approach was later influenced by ideas from Greek philosophy and Hellenistic philosophy with the rise of the Mu'tazili theologians, who highly valued Aristotle's Organon. The works of Hellenistic-influenced Islamic philosophers were crucial in the reception of Aristotelian logic in medieval Europe, along with the commentaries on the Organon by Averroes. The works of al-Farabi, Avicenna, al-Ghazali and other Muslim logicians who often criticized and corrected Aristotelian logic and introduced their own forms of logic, also played a central role in the subsequent development of medieval European logic.

Islamic logic not only included the study of formal patterns of inference and their validity but also elements of the philosophy of language and elements of epistemology and metaphysics. Due to disputes with Arabic grammarians, Islamic philosophers were very interested in working out the relationship between logic and language, and they devoted much discussion to the question of the subject matter and aims of logic in relation to reasoning and speech. In the area of formal logical analysis, they elaborated upon the theory of terms, propositions and syllogisms. They considered the syllogism to be the form to which all rational argumentation could be reduced, and they regarded syllogistic theory as the focal point of logic. Even poetics was considered as a syllogistic art in some fashion by many major Islamic logicians.

Important developments made by Muslim logicians included the development of "Avicennian logic" as a replacement of Aristotelian logic. Avicenna's system of logic was responsible for the introduction of hypothetical syllogism,[122] temporal modal logic,[123][124] and inductive logic.[125][126] Other important developments in Islamic philosophy include the development of a strict science of citation, the isnad or "backing", and the development of a scientific method of open inquiry to disprove claims, the ijtihad, which could be generally applied to many types of questions. From the 12th century, despite the logical sophistication of al-Ghazali, the rise of the Asharite school in the late Middle Ages slowly limited original work on logic in the Islamic world, though it did continue into the 15th century.

Mathematics[sunting | sunting sumber]

Rencana utama: Islamic mathematics
Al-Khwarizmi, seorang peneroka algebra dan algoritma.

John J. O'Connor and Edmund F. Robertson wrote in the MacTutor History of Mathematics archive:

"Recent research paints a new picture of the debt that we owe to Islamic mathematics. Certainly many of the ideas which were previously thought to have been brilliant new conceptions due to European mathematicians of the sixteenth, seventeenth and eighteenth centuries are now known to have been developed by Arabic/Islamic mathematicians around four centuries earlier."[127]

Al-Khwarizmi (780-850), from whose name the word algorithm derives, contributed significantly to algebra, which is named after his book, Kitab al-Jabr, the first book on elementary algebra.[128] He also introduced what is now known as Arabic numerals, which originally came from India, though Muslim mathematicians did make several refinements to the number system, such as the introduction of decimal point notation. Al-Kindi (801-873) was a pioneer in cryptanalysis and cryptology. He gave the first known recorded explanations of cryptanalysis and frequency analysis in A Manuscript on Deciphering Cryptographic Messages.[129][130]

The first known proof by mathematical induction appears in a book written by Al-Karaji around 1000 AD, who used it to prove the binomial theorem, Pascal's triangle, and the sum of integral cubes.[131] The historian of mathematics, F. Woepcke,[132] praised Al-Karaji for being "the first who introduced the theory of algebraic calculus." Ibn al-Haytham was the first mathematician to derive the formula for the sum of the fourth powers, and using the method of induction, he developed a method for determining the general formula for the sum of any integral powers, which was fundamental to the development of integral calculus.[133] The 11th century poet-mathematician Omar Khayyám was the first to find general geometric solutions of cubic equations and laid the foundations for the development of analytic geometry, algebraic geometry and non-Euclidean geometry. Sharaf al-Din al-Tusi (1135-1213) found algebraic and numerical solutions to cubic equations and was the first to discover the derivative of cubic polynomials, an important result in differential calculus.[134]

Other achievements of Muslim mathematicians include the invention of spherical trigonometry,[135] the discovery of all the trigonometric functions besides sine and cosine, early inquiry which aided the development of analytic geometry by Ibn al-Haytham, the first refutations of Euclidean geometry and the parallel postulate by Nasīr al-Dīn al-Tūsī, the first attempt at a non-Euclidean geometry by Sadr al-Din, the development of symbolic algebra by Abū al-Hasan ibn Alī al-Qalasādī,[136] and numerous other advances in algebra, arithmetic, calculus, cryptography, geometry, number theory and trigonometry.

Natural sciences[sunting | sunting sumber]

Astrology[sunting | sunting sumber]

Rencana utama: Islamic astrology

Islamic astrology, in Arabic ilm al-nujum is the study of the heavens by early Muslims. In early Arabic sources, ilm al-nujum was used to refer to both astronomy and astrology. In medieval sources, however, a clear distinction was made between ilm al-nujum (science of the stars) or ilm al-falak (science of the celestial orbs), referring to astrology, and ilm al-haya (science of the figure of the heavens), referring to astronomy. Both fields were rooted in Greek, Persian, and Indian traditions. Despite consistent critiques of astrology by scientists and religious scholars, astrological prognostications required a fair amount of exact scientific knowledge and thus gave partial incentive for the study and development of astronomy.

The first semantic distinction between astronomy and astrology was given by al-Biruni in the 11th century, though he himself refuted the study of astrology.[137] The study of astrology was also refuted by other Muslim astronomers at the time, including al-Farabi, Ibn al-Haytham, Avicenna and Averroes. Their reasons for refuting astrology were both due to the methods used by astrologers being conjectural rather than empirical and also due to the views of astrologers conflicting with orthodox Islam.[138]

Ilmu falak[sunting | sunting sumber]

Rencana utama: Ilmu falak Islam
Nasir al-Din Tusi adalah seorang polymath yang menyelesaikan masalah penting pada sistem Ptolemaik dengan Tusi-couple, yang memainkan suatu pernan penting pada Copernican heliocentrism.

In astronomy, the works of Egyptian/Greek astronomer Ptolemy, particularly the Almagest, and the Indian work of Brahmagupta, were significantly refined over the years by Muslim astronomers. The astronomical tables of Al-Khwarizmi and of Maslamah Ibn Ahmad al-Majriti served as important sources of information for Latinized European thinkers rediscovering the works of astronomy, where extensive interest in astrology was discouraged.

In the 11th century, Muslim astronomers began questioning the Ptolemaic system, beginning with Ibn al-Haytham, and they were the first to conduct elaborate experiments related to astronomical phenomena, beginning with Abū al-Rayhān al-Bīrūnī's introduction of the experimental method into astronomy.[139] Many of them made changes and corrections to the Ptolemaic model and proposed alternative non- Ptolemaic models within a geocentric framework. In particular, the corrections and critiques of al-Battani, Ibn al-Haytham, and Averroes, and the non-Ptolemaic models of the Maragha astronomers, Nasir al-Din al-Tusi (Tusi-couple), Mo'ayyeduddin Urdi (Urdi lemma), and Ibn al-Shatir, were later adapted into the heliocentric Copernican model,[140][141] and that Copernicus' arguments for the Earth's rotation were similar to those of al-Tusi and Ali al-Qushji.[142] Some have referred to the achievements of the Maragha school as a "Maragha Revolution", "Maragha School Revolution", or "Scientific Revolution before the Renaissance".[5]

Other contributions from Muslim astronomers include Biruni speculating that the Milky Way galaxy is a collection of numerous nebulous stars,[139] the development of a planetary model without any epicycles by Ibn Bajjah (Avempace),[143] the optical writings of Ibn al-Haytham having laid the foundations for the later European development of telescopic astronomy,[144] the development of universal astrolabes,[145] the invention of numerous other astronomical instruments, continuation of inquiry into the motion of the planets, Ja'far Muhammad ibn Mūsā ibn Shākir's discovery that the heavenly bodies and celestial spheres are subject to the same physical laws as Earth,[146] the first elaborate experiments related to astronomical phenomena and the first semantic distinction between astronomy and astrology by Abū al-Rayhān al-Bīrūnī,[137] the use of exacting empirical observations and experimental techniques,[147] the discovery that the celestial spheres are not solid and that the heavens are less dense than the air by Ibn al-Haytham,[148] the separation of natural philosophy from astronomy by Ibn al-Haytham[149] and al-Qushji,[142] the rejection of the Ptolemaic model on empirical rather than philosophical grounds by Ibn al-Shatir,[5] and the first empirical observational evidence of the Earth's rotation by al-Tusi and al-Qushji.[142] Several Muslim astronomers also discussed the possibility of a heliocentric model with elliptical orbits,[150] such as Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, Ibn al-Haytham, Abū al-Rayhān al-Bīrūnī, al-Sijzi, 'Umar al-Katibi al-Qazwini, and Qutb al-Din al-Shirazi.[151]

Kimia[sunting | sunting sumber]

Jabir ibn Hayyan (Geber) adalah seorang polymath yang dianggap seorang peneroka kimia dan minyak wangi.

The 9th century chemist, Geber (Jabir ibn Hayyan), is considered a pioneer of chemistry,[152][153][87] for introducing an early experimental method for chemistry, as well as the alembic, still, retort, pure distillation, liquefaction, crystallisation, purification, oxidisation, evaporation, and filtration.[87]

Al-Kindi was the first to refute the study of traditional alchemy and the theory of the transmutation of metals,[154] followed by Abū Rayhān al-Bīrūnī,[155] Avicenna,[156] and Ibn Khaldun. Avicenna also invented steam distillation and produced the first essential oils, which led to the development of aromatherapy. Razi first distilled petroleum, invented kerosene and kerosene lamps, soap bars and modern recipes for soap, and antiseptics. In his Doubts about Galen, al-Razi was also the first to prove both Aristotle's theory of classical elements and Galen's theory of humorism wrong using an experimental method.[95] In the 13th century, Nasīr al-Dīn al-Tūsī stated an early version of the law of conservation of mass, noting that a body of matter is able to change, but is not able to disappear.[157]

Will Durant wrote in The Story of Civilization IV: The Age of Faith:

"Chemistry as a science was almost created by the Moslems; for in this field, where the Greeks (so far as we know) were confined to industrial experience and vague hypothesis, the Saracens introduced precise observation, controlled experiment, and careful records. They invented and named the alembic (al-anbiq), chemically analyzed innumerable substances, composed lapidaries, distinguished alkalis and acids, investigated their affinities, studied and manufactured hundreds of drugs. Alchemy, which the Moslems inherited from Egypt, contributed to chemistry by a thousand incidental discoveries, and by its method, which was the most scientific of all medieval operations."[12]

George Sarton wrote in the Introduction to the History of Science:

"We find in his (Jabir, Geber) writings remarkably sound views on methods of chemical research, a theory on the geologic formation of metals (the six metals differ essentially because of different proportions of sulphur and mercury in them); preparation of various substances (e.g., basic lead carbonatic, arsenic and antimony from their sulphides)."[139]

Sains Bumi[sunting | sunting sumber]

Rencana utama: Geografi Islam


Muslim scientists made a number of contributions to the Earth sciences. Alkindus was the first to introduce experimentation into the Earth sciences.[71] Biruni is considered a pioneer of geodesy for his important contributions to the field,[158][159] along with his significant contributions to geography and geology.

Among his writings on geology, Biruni wrote the following on the geology of India:

"But if you see the soil of India with your own eyes and meditate on its nature, if you consider the rounded stones found in earth however deeply you dig, stones that are huge near the mountains and where the rivers have a violent current: stones that are of smaller size at a greater distance from the mountains and where the streams flow more slowly: stones that appear pulverised in the shape of sand where the streams begin to stagnate near their mouths and near the sea - if you consider all this you can scarcely help thinking that India was once a sea, which by degrees has been filled up by the alluvium of the streams."[160]

John J. O'Connor and Edmund F. Robertson write in the MacTutor History of Mathematics archive:

"Important contributions to geodesy and geography were also made by al-Biruni. He introduced techniques to measure the earth and distances on it using triangulation. He found the radius of the earth to be 6339.6 km, a value not obtained in the West until the 16th century. His Masudic canon contains a table giving the coordinates of six hundred places, almost all of which he had direct knowledge."[72]

Fielding H. Garrison wrote in the History of Medicine:

"The Saracens themselves were the originators not only of algebra, chemistry, and geology, but of many of the so-called improvements or refinements of civilization..."

George Sarton wrote in the Introduction to the History of Science:

"We find in his (Jabir, Geber) writings remarkably sound views on methods of chemical research, a theory on the geologic formation of metals (the six metals differ essentially because of different proportions of sulphur and mercury in them)..."[139]

In geology, Avicenna hypothesized on two causes of mountains in The Book of Healing (1027) and developed the law of superposition and concept of uniformitarianism.[161][162] In cartography, the Piri Reis map drawn by the Ottoman cartographer Piri Reis in 1513, was one of the earliest world maps to include the Americas, and perhaps the first to include Antarctica. His map of the world was considered the most accurate in the 16th century.

The earliest known treatises dealing with environmentalism and environmental science, especially pollution, were Arabic treatises written by al-Kindi, al-Razi, Ibn Al-Jazzar, al-Tamimi, al-Masihi, Avicenna, Ali ibn Ridwan, Abd-el-latif, and Ibn al-Nafis. Their works covered a number of subjects related to pollution such as air pollution, water pollution, soil contamination, municipal solid waste mishandling, and environmental impact assessments of certain localities.[163] Cordoba, al-Andalus also had the first waste containers and waste disposal facilities for litter collection.[164]

Physics[sunting | sunting sumber]

Rencana utama: Islamic physics
Sehelai halaman manuskrip Ibn Sahl menunjuk penemuannya pada hukum pembiasan (Hukum Snell).

In the optics field of physics, Ibn Sahl (c. 940-1000), a mathematician and physicist connected with the court of Baghdad, wrote a treatise On Burning Mirrors and Lenses in 984 in which he set out his understanding of how curved mirrors and lenses bend and focus light. Ibn Sahl is now credited with first discovering the law of refraction, usually called Snell's law.[165][166] He used this law to work out the shapes of lenses that focus light with no geometric aberrations, known as anaclastic lenses.

Ibn al-Haytham (Alhazen) (965-1039), who is considered a pioneer of optics and the scientific method, developed a broad theory of light and optics in his Book of Optics which explained vision, using geometry and anatomy, and stated that each point on an illuminated area or object radiates light rays in every direction, but that only one ray from each point, which strikes the eye perpendicularly, can be seen. The other rays strike at different angles and are not seen. He used the example of the camera obscura and pinhole camera, which produces an inverted image, to support his argument. This contradicted Ptolemy's theory of vision that objects are seen by rays of light emanating from the eyes. Alhacen held light rays to be streams of minute particles that travelled at a finite speed. He improved accurately described the refraction of light, and discovered the laws of refraction. He dealt at length with the theory of various physical phenomena like shadows, eclipses, and the rainbow. He also attempted to explain binocular vision and the moon illusion. Through these extensive researches on optics, he is considered a pioneer of modern optics. His Book of Optics was later translated into Latin, and has been ranked alongside Isaac Newton's Philosophiae Naturalis Principia Mathematica as one of the most influential books in the history of physics,[167] for initiating a revolution in optics[18] and visual perception.[19]

Avicenna (980-1037) agreed that the speed of light is finite, as he "observed that if the perception of light is due to the emission of some sort of particles by a luminous source, the speed of light must be finite."[168] Abū Rayhān al-Bīrūnī (973-1048) also agreed that light has a finite speed, and he was the first to discover that the speed of light is much faster than the speed of sound.[72] Qutb al-Din al-Shirazi (1236-1311) and Kamāl al-Dīn al-Fārisī (1260-1320) gave the first correct explanations for the rainbow phenomenon.[169]

In mechanics, Ja'far Muhammad ibn Mūsā ibn Shākir (800-873) of the Banū Mūsā hypothesized that heavenly bodies and celestial spheres were subject to the same laws of physics as Earth,[146] and in his Astral Motion and The Force of Attraction, he also hypothesized that there was a force of attraction between heavenly bodies.[170] Abū Rayhān al-Bīrūnī (973-1048), and later al-Khazini, developed experimental scientific methods for mechanics, especially the fields of statics and dynamics, particularly for determining specific weights, such as those based on the theory of balances and weighing. Muslim physicists unified statics and dynamics into the science of mechanics, and they combined the fields of hydrostatics with dynamics to give birth to hydrodynamics. They applied the mathematical theories of ratios and infinitesimal techniques, and introduced algebraic and fine calculation techniques into the field of statics. They were also generalized the theory of the centre of gravity and applied it to three-dimensional bodies. They also founded the theory of the ponderable lever and created the "science of gravity" which was later further developed in medieval Europe.[171] Al-Biruni also theorized that acceleration is connected with non-uniform motion.[72]

In mechanics, Ibn al-Haytham discussed the theory of attraction between masses, and it seems that he was aware of the magnitude of acceleration due to gravity, and he stated that the heavenly bodies "were accountable to the laws of physics".[172] Ibn al-Haytham also enunciated the law of inertia when he stated that a body moves perpetually unless an external force stops it or changes its direction of motion.[77] He also developed the concept of momentum,[173] though he did not quantify this concept mathematically. Avicenna (980-1037) developed the concept of momentum, referring to impetus as being proportional to weight times velocity.[174] His theory of motion was also consistent with the concept of inertia in classical mechanics.[174]

In 1121, al-Khazini, in The Book of the Balance of Wisdom, proposed that the gravity and gravitational potential energy of a body varies depending on its distance from the centre of the Earth,[175] and in statics, he clearly differentiated between force, mass and weight.[176] Avempace (d. 1138) argued that there is always a reaction force for every force exerted,[177] though he did not refer to the reaction force as being equal to the exerted force.[178] His theory of motion had an important influence on later physicists like Galileo Galilei.[179] Hibat Allah Abu'l-Barakat al-Baghdaadi (1080-1165) wrote a critique of Aristotelian physics entitled al-Mu'tabar, where he negated Aristotle's idea that a constant force produces uniform motion, as he theorized that a force applied continuously produces acceleration.[180] He also described acceleration as the rate of change of velocity.[181] Averroes (1126–1198) defined and measured force as "the rate at which work is done in changing the kinetic condition of a material body"[182] and correctly argued "that the effect and measure of force is change in the kinetic condition of a materially resistant mass."[183] In the early 16th century, al-Birjandi developed a hypothesis similar to "circular inertia."[142] The Muslim developments in mechanics laid the foundations for the later development of classical mechanics in early modern Europe.[184]

Zoology[sunting | sunting sumber]

In the zoology field of biology, Muslim biologists developed theories on evolution which were widely taught in medieval Islamic schools. John William Draper, a contemporary of Charles Darwin, considered the "Mohammedan theory of evolution" to be developed "much farther than we are disposed to do, extending them even to inorganic or mineral things." According to al-Khazini, ideas on evolution were widespread among "common people" in the Islamic world by the 12th century.[185]

The first Muslim biologist to develop a theory on evolution was al-Jahiz (781-869). He wrote on the effects of the environment on the likelihood of an animal to survive, and he first described the struggle for existence.[186][187] Al-Jahiz was also the first to discuss food chains,[188] and was also an early adherent of environmental determinism, arguing that the environment can determine the physical characteristics of the inhabitants of a certain community and that the origins of different human skin colors is the result of the environment.[189]

Ibn al-Haytham wrote a book in which he argued for evolutionism (although not natural selection), and numerous other Islamic scholars and scientists, such as Ibn Miskawayh, the Brethren of Purity, al-Khazini, Abū Rayhān al-Bīrūnī, Nasir al-Din Tusi, and Ibn Khaldun, discussed and developed these ideas. Translated into Latin, these works began to appear in the West after the Renaissance and appear to have had an impact on Western science.

Ibn Miskawayh's al-Fawz al-Asghar and the Brethren of Purity's Encyclopedia of the Brethren of Purity (The Epistles of Ikhwan al-Safa) expressed evolutionary ideas on how species evolved from matter, into vapor, and then water, then minerals, then plants, then animals, then apes, and then humans. These works were known in Europe and likely had an influence on Darwinism.[190]

Sains masyarakat[sunting | sunting sumber]

Sosiologi dan Antropologi[sunting | sunting sumber]

Significant contributions were made to the social sciences in the Islamic civilization. Abū al-Rayhān al-Bīrūnī (973-1048) has been described as "the first anthropologist".[158] He wrote detailed comparative studies on the anthropology of peoples, religions and cultures in the Middle East, Mediterranean and South Asia. Biruni's anthropology of religion was only possible for a scholar deeply immersed in the lore of other nations.[191] Biruni has also been praised by several scholars for his Islamic anthropology.[192] Biruni is also considered a pioneer of Indology.[193] Al-Saghani (d. 990) wrote some of the earliest comments on the history of science, which included a comparison between the more theoretical approach of the "ancients" (including the ancient Egyptians, Babylonians, Greeks and Indians) to that of the more experimental approach of the "modern scholars" (the Muslim scientists of his time).[194] Al-Muqaddasi (b. 945) also made contributions to the social sciences.

Ibn Khaldun (1332-1406) is considered a forerunner of several social sciences[195] such as demography,[196] cultural history,[197] historiography,[198] the philosophy of history,[199] sociology,[196][199] and economics.[200][201] He is best known for his Muqaddimah (Latinized as Prolegomenon). Some of the ideas he introduced in the Muqaddimah include social philosophy, social conflict theories, social cohesion, social capital, social networks, dialectics, the Laffer curve, the historical method, systemic bias, the rise and fall of civilizations, feedback loops, systems theory, and corporate social responsibility. He also introduced the scientific method into the social sciences.[74]

Franz Rosenthal wrote in the History of Muslim Historiography:

"Muslim historiography has at all times been united by the closest ties with the general development of scholarship in Islam, and the position of historical knowledge in MusIim education has exercised a decisive influence upon the intellectual level of historicai writing....The Muslims achieved a definite advance beyond previous historical writing in the sociological understanding of history and the systematisation of historiography. The development of modern historical writing seems to have gained considerably in speed and substance through the utilization of a Muslim Literature which enabled western historians, from the seventeenth century on, to see a large section of the world through foreign eyes. The Muslim historiography helped indirectly and modestly to shape present day historical thinking."[202]

Psychology[sunting | sunting sumber]

Rencana utama: Islamic psychology

"Islamic psychology"[203] or Ilm-al Nafsiat[204] refers to the study of the Nafs ("self" or "psyche")[205] in the Islamic world and encompassed a "broad range of topics including the qalb (heart), the ruh (spirit), the aql (intellect) and irada (will)."[204] Al-Kindi (Alkindus) was the first to experiment with music therapy,[206] and Ali ibn Sahl Rabban al-Tabari was the first to practice 'al-‘ilaj al-nafs ("psychotherapy").[207] The concepts of al-tibb al-ruhani ("spiritual health") and "mental hygiene" were introduced by Ahmed ibn Sahl al-Balkhi,[205] who was "probably the first cognitive and medical psychologist to clearly differentiate between neuroses and psychoses, to classify neurotic disorders, and to show in detail how rational and spiritual cognitive therapies can be used to treat each one of his classified disorders."[207] Al-Razi (Rhazes) made significant advances in psychiatry in his landmark texts El-Mansuri and Al-Hawi, which presented definitions, symptoms and treatments for mental illnesses and problems related to mental health. He also ran the psychiatric ward of a Baghdad hospital. Such institutions could not exist in Europe at the time because of fear of demonic possessions.[208]

Al-Farabi wrote the first treatises on social psychology and dealt with consciousness studies.[207] In al-Andalus, Abulcasis pioneered neurosurgery, while Ibn Zuhr (Avenzoar) gave the first accurate descriptions on neurological disorders and contributed to modern neuropharmacology, and Averroes suggested the existence of Parkinson's disease.[209] Ali ibn Abbas al-Majusi discussed "the relationship between certain psychological events to the physiological changes in the body",[205] while Avicenna anticipated the word association test,[208] discussed neuropsychiatry in The Canon of Medicine,[210] and described the first thought experiments on self-awareness and self-consciousness.[211]

Ibn al-Haytham (Alhazen) is considered by some a forerunner of experimental psychology,[212] for his experimental work on the psychology of visual perception in the Book of Optics,[213] where he was the first scientist to argue that vision occurs in the brain, rather than the eyes. He pointed out that personal experience has an effect on what people see and how they see, and that vision and perception are subjective.[213] He was also the first to combine physics and psychology to form psychophysics, and his investigations and experiments on psychology and visual perception included sensation, variations in sensitivity, sensation of touch, perception of colours, perception of darkness, the psychological explanation of the moon illusion, and binocular vision.[212] Biruni was also a pioneer of experimental psychology, as he was the first to empirically describe the concept of reaction time.[214]

Historiography of Islamic science[sunting | sunting sumber]

The history of science in the Islamic world, like all history, is filled with questions of interpretation. Historians of science generally consider that the study of Islamic science, like all history, must be seen within the particular circumstances of time and place. A. I. Sabra opened a recent overview of Arabic science by noting, "I trust no one would wish to contest the proposition that all of history is local history ... and the history of science is no exception."[215]

Some scholars avoid such local historical approaches and seek to identify essential relations between Islam and science that apply at all times and places. The Pakistani physicist, Pervez Hoodbhoy, portrayed "religious fanaticism to be the dominant relation of religion and science in Islam". Sociologist Toby Huff claimed that Islam lacked the "rationalist view of man and nature" that became dominant in Europe. The Persian philosopher and historian of science, Seyyed Hossein Nasr saw a more positive connection in "an Islamic science that was spiritual and antisecular" which "point[ed] the way to a new 'Islamic science' that would avoid the dehumanizing and despiritualizing mistakes of Western science."[216][217]

Nasr identified a distinctly Muslim approach to science, flowing from Islamic monotheism and the related theological prohibition against portraying graven images. In science, this is reflected in a philosophical disinterest in describing individual material objects, their properties and characteristics and instead a concern with the ideal, the Platonic form, which exists in matter as an expression of the will of the Creator. Thus one can "see why mathematics was to make such a strong appeal to the Muslim: its abstract nature furnished the bridge that Muslims were seeking between multiplicity and unity."[218]

Some historians of science, however, question the value of drawing boundaries that label the sciences, and the scientists who practice them, in specific cultural, civilizational, or linguistic terms. Consider the case of Nasir al-Din Tusi (1201–1274), who invented his mathematical theorem, the Tusi Couple, while he was director of Maragheh observatory. Tusi's patron and founder of the observatory was the non-Muslim Mongol conqueror of Baghdad, Hulagu Khan. The Tusi-couple "was first encountered in an Arabic text, written by a man who spoke Persian at home, and used that theorem, like many other astronomers who followed him and were all working in the "Arabic/Islamic" world, in order to reform classical Greek astronomy, and then have his theorem in turn be translated into Byzantine Greek towards the beginning of the fourteenth century, only to be used later by Copernicus and others in Latin texts of Renaissance Europe."[219]

Lihat pula[sunting | sunting sumber]

Nota[sunting | sunting sumber]

  1. Sabra, A. I. (1996). "Situating Arabic Science: Locality versus Essence". Isis 87 (4): 654–670. doi:10.1086/357651. 
    "Let us begin with a neutral and innocent definition of Arabic, or what also may be called Islamic, science in terms of time and space: the term Arabic (or Islamic) science the scientific activities of individuals who lived in a region that might extended chronologically from the eighth century A.D. to the beginning of the modern era, and geographically from the Iberian Peninsula and north Africa to the Indus valley and from the Southern Arabia to the Caspian Sea—that is, the region covered for most of that period by what we call Islamic Civilization, and in which the results of the activities referred to were for the most part expressed in the Arabic Language. We need not be concerned over the refinements that obviously need to be introduced over this seemingly neutral definition."
  2. Bernard Lewis, What Went Wrong? Western Impact and Middle Eastern Response:
    "There have been many civilizations in human history, almost all of which were local, in the sense that they were defined by a region and an ethnic group. This applied to all the ancient civilizations of the Middle East—Egypt, Babylon, Persia; to the great civilizations of Asia—India, China; and to the civilizations of Pre-Columbian America. There are two exceptions: Christendom and Islam. These are two civilizations defined by religion, in which religion is the primary defining force, not, as in India or China, a secondary aspect among others of an essentially regional and ethnically defined civilization. Here, again, another word of explanation is necessary."
    "In English we use the word “Islam” with two distinct meanings, and the distinction is often blurred and lost and gives rise to considerable confusion. In the one sense, Islam is the counterpart of Christianity; that is to say, a religion in the strict sense of the word: a system of belief and worship. In the other sense, Islam is the counterpart of Christendom; that is to say, a civilization shaped and defined by a religion, but containing many elements apart from and even hostile to that religion, yet arising within that civilization."
  3. Bertrand Russell (1945), History of Western Philosophy, book 2, part 2, chapter X
  4. Abdus Salam, H. R. Dalafi, Mohamed Hassan (1994). Renaissance of Sciences in Islamic Countries, p. 162. World Scientific, ISBN 9971-5-0713-7.
  5. 5.0 5.1 5.2 (Saliba 1994, pp. 245, 250, 256-257)
  6. Abid Ullah Jan (2006), After Fascism: Muslims and the struggle for self-determination, "Islam, the West, and the Question of Dominance", Pragmatic Publishings, ISBN 978-0-9733687-5-8.
  7. Salah Zaimeche (2003), An Introduction to Muslim Science, FSTC.
  8. Ahmad Y Hassan and Donald Routledge Hill (1986), Islamic Technology: An Illustrated History, p. 282, Cambridge University Press
  9. 9.0 9.1 9.2 9.3 Robert Briffault (1928). The Making of Humanity, p. 191. G. Allen & Unwin Ltd.
  10. 10.0 10.1 (Huff 2003)
  11. Saliba, George (Autumn 1999), Seeking the Origins of Modern Science? Review of Toby E. Huff, The Rise of Early Modern Science: Islam, China and the West, Bulletin of the Royal Institute for Inter-Faith Studies 1 (2), diperoleh pada 2008-04-10 
  12. 12.0 12.1 12.2 12.3 Will Durant (1980). The Age of Faith (The Story of Civilization, Volume 4), p. 162-186. Simon & Schuster. ISBN 0-671-01200-2.
  13. 13.0 13.1 Fielding H. Garrison, An Introduction to the History of Medicine: with Medical Chronology, Suggestions for Study and Biblographic Data, p. 86
  14. Ralat petik: Tag <ref> tidak sah; teks bagi rujukan Iqbal tidak disediakan
  15. Edmund, Norman W. (2005), End the Biggest Educational and Intellectual Blunder in History: A $100,000 Challenge to Our Top Educational Leaders, Scientific Method Publishing, ms. 447, ISBN 0963286668 
  16. Thomas Kuhn, The Copernican Revolution, (Cambridge: Harvard Univ. Pr., 1957), p. 142.
  17. Herbert Butterfield, The Origins of Modern Science, 1300-1800.
  18. 18.0 18.1 Sabra, A. I.; Hogendijk, J. P., The Enterprise of Science in Islam: New Perspectives, MIT Press, ms. 85–118, ISBN 0262194821 
  19. 19.0 19.1 Hatfield, Gary (1996), "Was the Scientific Revolution Really a Revolution in Science?", dalam Ragep, F. J.; Ragep, Sally P.; Livesey, Steven John, Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma, Brill Publishers, ms. 500, ISBN 9004091262 
  20. Simon, Gérard (2006), The Gaze in Ibn al-Haytham, The Medieval History Journal 9 (1): 89–98, doi:10.1177/097194580500900105 
  21. Bellosta, Hélèna (2002), Burning Instruments: From Diocles to Ibn Sahl, Arabic Sciences and Philosophy (Cambridge University Press) 12: 285–303, doi:10.1017/S095742390200214X 
  22. Rashed, Roshdi (2 August 2002), Portraits of Science: A Polymath in the 10th Century, Science 297 (5582): 773, doi:10.1126/science.1074591 
  23. Lindberg, David C. (1967), Alhazen's Theory of Vision and Its Reception in the West, Isis 58 (3): 321–341 [332], doi:10.1086/350266 
  24. Bernard Lewis, What Went Wrong?
  25. Behrooz Broumand, The contribution of Iranian scientists to world civilization, Archives of Iranian Medicine 2006; 9 (3): 288 – 290
  26. N. M. Swerdlow (1993). "Montucla's Legacy: The History of the Exact Sciences", Journal of the History of Ideas 54 (2), p. 299-328 [320].
  27. 27.0 27.1 Peter Barrett (2004), Science and Theology Since Copernicus: The Search for Understanding, p. 18, Continuum International Publishing Group, ISBN 0-567-08969-X.
  28. Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the International Society for the History of Islamic Medicine, 2002 (2), p. 2-9 [7-8].
  29. Micheau, Francoise, "The Scientific Institutions in the Medieval Near East", ms. 992–3  Missing or empty |title= (bantuan), in (Morelon & Rashed 1996, pp. 985-1007)
  30. (Gaudiosi 1988)
  31. (Hudson 2003, p. 32)
  32. John Bagot Glubb (cf. Quotations on Islamic Civilization)
  33. The Guinness Book Of Records, Published 1998, ISBN 0-553-57895-2, P.242
  34. Micheau, Francoise, "The Scientific Institutions in the Medieval Near East", ms. 988–991  Missing or empty |title= (bantuan) in (Morelon & Rashed 1996, pp. 985-1007)
  35. 35.0 35.1 Karima Alavi, Tapestry of Travel, Center for Contemporary Arab Studies, Georgetown University.
  36. 36.0 36.1 Sardar, Ziauddin (1998), "Science in Islamic philosophy", Islamic Philosophy, Routledge Encyclopedia of Philosophy, diperoleh pada 2008-02-03 
  37. (Saliba 1994, p. vii):
    "The main thesis, for which this collection of articles came be used as evidence, is the one claiming that the period often called a period of decline in Islamic intellectual history was, scientifically speaking from the point of view of astronomy, a very productive period in which astronomical thories of the highest order were produced."
  38. David A. King, "The Astronomy of the Mamluks", Isis, 74 (1983):531-555
  39. 39.0 39.1 39.2 Ahmad Y Hassan, Factors Behind the Decline of Islamic Science After the Sixteenth Century
  40. Ignaz Goldziher, Stellung der alten islamischen Orthodoxie zu den antiken Wissenschaften(1915)
  41. Savage-Smith, Emilie (1995), Attitudes Toward Dissection in Medieval Islam, Journal of the History of Medicine and Allied Sciences (Oxford University Press) 50 (1): 67–110, doi:10.1093/jhmas/50.1.67, PMID 7876530 
  42. Erica Fraser. The Islamic World to 1600, University of Calgary.
  43. Nahyan A. G. Fancy (2006), "Pulmonary Transit and Bodily Resurrection: The Interaction of Medicine, Philosophy and Religion in the Works of Ibn al-Nafīs (d. 1288)", p. 49 & 59, Electronic Theses and Dissertations, University of Notre Dame.[1]
  44. Abdel-Halim, R. E. (2008), Contributions of Ibn Al-Nafis to the progress of medicine and urology: A study and translations from his medical works, Saudi Medical Journal 29 (1): 13-22 [15-6] 
  45. 45.0 45.1 45.2 45.3 Salah Zaimeche (2003). Aspects of the Islamic Influence on Science and Learning in the Christian West, p. 10. Foundation for Science Technology and Civilisation.
  46. 46.0 46.1 46.2 V. J. Katz, A History of Mathematics: An Introduction, p. 291.
  47. For a list of Gerard of Cremona's translations see: Edward Grant (1974) A Source Book in Medieval Science, (Cambridge: Harvard Univ. Pr.), pp. 35-8 or Charles Burnett, "The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century," Science in Context, 14 (2001): at 249-288, at pp. 275-281.
  48. 48.0 48.1 48.2 48.3 48.4 Jerome B. Bieber. Medieval Translation Table 2: Arabic Sources, Santa Fe Community College.
  49. D. Campbell, Arabian Medicine and Its Influence on the Middle Ages, p. 6.
  50. 50.0 50.1 50.2 D. Campbell, Arabian Medicine and Its Influence on the Middle Ages, p. 3.
  51. G. G. Joseph, The Crest of the Peacock, p. 306.
  52. M.-T. d'Alverny, "Translations and Translators," pp. 444-6, 451
  53. D. Campbell, Arabian Medicine and Its Influence on the Middle Ages, p. 4-5.
  54. D. Campbell, Arabian Medicine and Its Influence on the Middle Ages, p. 5.
  55. Biographisch-Bibliographisches Kirchenlexicon
  56. Charles Burnett, ed. Adelard of Bath, Conversations with His Nephew, (Cambridge: Cambridge University Press, 1999), p. xi.
  57. D. Campbell, Arabian Medicine and Its Influence on the Middle Ages, p. 4.
  58. M.-T. d'Alverny, "Translations and Translators," pp. 429, 455
  59. David Pingree (1964), "Gregory Chioniades and Palaeologan Astronomy", Dumbarton Oaks Papers 18, p. 135-160.
  60. Anatomy and Physiology, Islamic Medical Manuscripts, United States National Library of Medicine.
  61. D. S. Kasir (1931). The Algebra of Omar Khayyam, p. 6-7. Teacher's College Press, Columbia University, New York.
  62. Boris A. Rosenfeld and Adolf P. Youschkevitch (1996), "Geometry", p. 469, in (Morelon & Rashed 1996, pp. 447-494)
  63. Samar Attar, The Vital Roots of European Enlightenment: Ibn Tufayl's Influence on Modern Western Thought, Lexington Books, ISBN 0-7391-1989-3.
  64. 64.0 64.1 Russell McNeil, Ibn al-Baitar, Malaspina University-College.
  65. 65.0 65.1 65.2 Ahmad, I. A. (June 3, 2002), The Rise and Fall of Islamic Science: The Calendar as a Case Study, Faith and Reason: Convergence and Complementarity, Al Akhawayn University. Retrieved on 2008-01-31. [deadlink]
  66. "Observe nature and reflect over it."
    (cf. C. A. Qadir (1990), Philosophy and Science in the lslumic World, Routledge, London)
    (cf. Bettany, Laurence (1995), "Ibn al-Haytham: an answer to multicultural science teaching?", Physics Education 30: 247-252 [247])
  67. “You shall not accept any information, unless you verify it for yourself. I have given you the hearing, the eyesight, and the brain, and you are responsible for using them.”[al-Quran 17:36]
  68. “Behold! In the creation of the heavens and the earth; in the alternation of the night and the day; in the sailing of the ships through the ocean for the benefit of mankind; in the rain which Allah Sends down from the skies, and the life which He gives therewith to an earth that is dead; in the beasts of all kinds that He scatters through the earth; in the change of the winds, and the clouds which they trail like their slaves between the sky and the earth - (Here) indeed are Signs for a people that are wise.”[al-Quran 2:164]
  69. 69.0 69.1 Rosanna Gorini (2003). "Al-Haytham the Man of Experience. First Steps in the Science of Vision", International Society for the History of Islamic Medicine. Institute of Neurosciences, Laboratory of Psychobiology and Psychopharmacology, Rome, Italy.
  70. David Agar (2001). Arabic Studies in Physics and Astronomy During 800 - 1400 AD. University of Jyväskylä.
  71. 71.0 71.1 Plinio Prioreschi, "Al-Kindi, A Precursor Of The Scientific Revolution", Journal of the International Society for the History of Islamic Medicine, 2002 (2): 17-19.
  72. 72.0 72.1 72.2 72.3 Templat:MacTutor
  73. 73.0 73.1 Rabie E. Abdel-Halim (2005), "Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: A study and translations from his book Al-Taisir", Saudi Medical Journal 2005; Vol. 26 (9): 1333-1339.
  74. 74.0 74.1 Ibn Khaldun, Franz Rosenthal, N. J. Dawood (1967), The Muqaddimah: An Introduction to History, p. x, Princeton University Press, ISBN 0-691-01754-9.
  75. R. L. Verma "Al-Hazen: father of modern optics", Al-Arabi, 8 (1969): 12-13.
  76. D. C. Lindberg, Theories of Vision from al-Kindi to Kepler, (Chicago, Univ. of Chicago Pr., 1976), pp. 60-7.
  77. 77.0 77.1 Dr. Nader El-Bizri, "Ibn al-Haytham or Alhazen", in Josef W. Meri (2006), Medieval Islamic Civilization: An Encyclopaedia, Vol. II, p. 343-345, Routledge, New York, London.
  78. Bradley Steffens (2006). Ibn al-Haytham: First Scientist, Morgan Reynolds Publishing, ISBN 1-59935-024-6. (cf. Bradley Steffens, "Who Was the First Scientist?", Ezine Articles.)
  79. Bradley Steffens (2006). Ibn al-Haytham: First Scientist, Morgan Reynolds Publishing, ISBN 1-59935-024-6.
  80. Roshdi Rashed (2007). "The Celestial Kinematics of Ibn al-Haytham", Arabic Sciences and Philosophy 17, p. 7-55 [35-36]. Cambridge University Press.
  81. Robert Briffault (1928). The Making of Humanity, p. 202. G. Allen & Unwin Ltd.
  82. Abdus Salam (1984), "Islam and Science". In C. H. Lai (1987), Ideals and Realities: Selected Essays of Abdus Salam, 2nd ed., World Scientific, Singapore, p. 179-213.
  83. Oliver Joseph Lodge, Pioneers of Science, p. 9.
  84. Ray Spier (2002), "The history of the peer-review process", Trends in Biotechnology 20 (8), p. 357-358 [357].
  85. 1000 Years of Knowledge Rediscovered at Ibn Battuta Mall, MTE Studios.
  86. Teun Koetsier (2001), "On the prehistory of programmable machines: musical automata, looms, calculators", Mechanism and Machine theory 36: 590-591
  87. 87.0 87.1 87.2 87.3 Paul Vallely, How Islamic Inventors Changed the World, The Independent, 11 March 2006.
  88. Toufic Fahd (1996), "Botany and agriculture", p. 849, in (Morelon & Rashed 1996, pp. 813-852)
  89. Fahd, Toufic, "Botany and agriculture", ms. 815  Missing or empty |title= (bantuan), in (Morelon & Rashed 1996)
  90. Huff, Toby (2003), The Rise of Early Modern Science: Islam, China, and the West, Cambridge University Press, ms. 218 Extra |pages= or |at= (bantuan), ISBN 0521529948 
  91. Diane Boulanger (2002), "The Islamic Contribution to Science, Mathematics and Technology", OISE Papers, in STSE Education, Vol. 3.
  92. 92.0 92.1 92.2 George Sarton, Introduction to the History of Science.
    (cf. Dr. A. Zahoor and Dr. Z. Haq (1997), Quotations From Famous Historians of Science, Cyberistan.
  93. Felix Klein-Frank (2001), Al-Kindi, in Oliver Leaman and Hossein Nasr, History of Islamic Philosophy, p. 172. Routledge, London.
  94. David W. Tschanz, PhD (2003), "Arab Roots of European Medicine", Heart Views 4 (2).
  95. 95.0 95.1 G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", The Rational Argumentator, Issue VI.
  96. Rafik Berjak and Muzaffar Iqbal, "Ibn Sina—Al-Biruni correspondence", Islam & Science, December 2003.
  97. A. Martin-Araguz, C. Bustamante-Martinez, Ajo V. Fernandez-Armayor, J. M. Moreno-Martinez (2002). "Neuroscience in al-Andalus and its influence on medieval scholastic medicine", Revista de neurología 34 (9), p. 877-892.
  98. 98.0 98.1 98.2 98.3 Bashar Saad, Hassan Azaizeh, Omar Said (October 2005). "Tradition and Perspectives of Arab Herbal Medicine: A Review", Evidence-based Complementary and Alternative Medicine 2 (4), p. 475-479 [476]. Oxford University Press.
  99. Khaled al-Hadidi (1978), "The Role of Muslim Scholars in Oto-rhino-Laryngology", The Egyptian Journal of O.R.L. 4 (1), p. 1-15. (cf. Ear, Nose and Throat Medical Practice in Muslim Heritage, Foundation for Science Technology and Civilization.)
  100. Zafarul-Islam Khan, At The Threshhold Of A New Millennium – II, The Milli Gazette.
  101. Rabie E. Abdel-Halim (2006), "Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urology", Saudi Medical Journal 27 (11): 1631-1641.
  102. Islamic medicine, Hutchinson Encyclopedia.
  103. Chairman's Reflections (2004), "Traditional Medicine Among Gulf Arabs, Part II: Blood-letting", Heart Views 5 (2), p. 74-85 [80].
  104. Husain F. Nagamia (2003), "Ibn al-Nafīs: A Biographical Sketch of the Discoverer of Pulmonary and Coronary Circulation", Journal of the International Society for the History of Islamic Medicine 1, p. 22–28.
  105. George Sarton (cf. Dr. Paul Ghalioungui (1982), "The West denies Ibn Al Nafis's contribution to the discovery of the circulation", Symposium on Ibn al-Nafis, Second International Conference on Islamic Medicine: Islamic Medical Organization, Kuwait)
    (cf. The West denies Ibn Al Nafis's contribution to the discovery of the circulation, Encyclopedia of Islamic World)
  106. Dr. Abu Shadi Al-Roubi (1982), "Ibn Al-Nafis as a philosopher", Symposium on Ibn al-Nafis, Second International Conference on Islamic Medicine: Islamic Medical Organization, Kuwait (cf. Ibn al-Nafis As a Philosopher, Encyclopedia of Islamic World).
  107. Nahyan A. G. Fancy (2006), "Pulmonary Transit and Bodily Resurrection: The Interaction of Medicine, Philosophy and Religion in the Works of Ibn al-Nafīs (d. 1288)", p. 3 & 6, Electronic Theses and Dissertations, University of Notre Dame.[2]
  108. Dr. Sulaiman Oataya (1982), "Ibn ul Nafis has dissected the human body", Symposium on Ibn al-Nafis, Second International Conference on Islamic Medicine: Islamic Medical Organization, Kuwait (cf. Ibn ul-Nafis has Dissected the Human Body, Encyclopedia of Islamic World).
  109. L. Leclerc (1876), Histoire de la medecine Arabe, vol. 2, p. 161, Paris.
    (cf. Salah Zaimeche, The Scholars of Aleppo: Al Mahassin, Al Urdi, Al-Lubudi, Al-Halabi, Foundation for Science Technology and Civilisation)
  110. (Turner 1997, pp. 136—138)
  111. Ibrahim B. Syed, Ph.D. (2002). "Islamic Medicine: 1000 years ahead of its times", Journal of the International Society for the History of Islamic Medicine 2, p. 2-9.
  112. S. Hadzovic (1997). "Pharmacy and the great contribution of Arab-Islamic science to its development", Medicinski Arhiv 51 (1-2), p. 47-50.
  113. Katharine Park (March 1990). "Avicenna in Renaissance Italy: The Canon and Medical Teaching in Italian Universities after 1500 by Nancy G. Siraisi", The Journal of Modern History 62 (1), p. 169-170.
  114. Jacquart, Danielle (2008), Islamic Pharmacology in the Middle Ages: Theories and Substances, European Review (Cambridge University Press) 16: 219–27, doi:10.1017/S1062798708000215 
  115. David W. Tschanz, MSPH, PhD (August 2003). "Arab Roots of European Medicine", Heart Views 4 (2).
  116. Jonathan D. Eldredge (2003), "The Randomised Controlled Trial design: unrecognized opportunities for health sciences librarianship", Health Information and Libraries Journal 20, p. 34–44 [36].
  117. Bernard S. Bloom, Aurelia Retbi, Sandrine Dahan, Egon Jonsson (2000), "Evaluation Of Randomized Controlled Trials On Complementary And Alternative Medicine", International Journal of Technology Assessment in Health Care 16 (1), p. 13–21 [19].
  118. D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", Clinical Pharmacology & Therapeutics 67 (5), p. 447-450 [449].
  119. Walter J. Daly and D. Craig Brater (2000), "Medieval contributions to the search for truth in clinical medicine", Perspectives in Biology and Medicine 43 (4), p. 530–540 [536], Johns Hopkins University Press.
  120. D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", Clinical Pharmacology & Therapeutics 67 (5), p. 447-450 [448].
  121. The Canon of Medicine, The American Institute of Unani Medicine, 2003.
  122. Lenn Evan Goodman (2003), Islamic Humanism, p. 155, Oxford University Press, ISBN 0-19-513580-6.
  123. History of logic: Arabic logic, Encyclopædia Britannica.
  124. Dr. Lotfollah Nabavi, Sohrevardi's Theory of Decisive Necessity and kripke's QSS System, Journal of Faculty of Literature and Human Sciences.
  125. Science and Muslim Scientists, Islam Herald.
  126. Wael B. Hallaq (1993), Ibn Taymiyya Against the Greek Logicians, p. 48. Oxford University Press, ISBN 0-19-824043-0.
  127. John J. O'Connor and Edmund F. Robertson (1999). Arabic mathematics: forgotten brilliance? MacTutor History of Mathematics archive.
  128. (Eglash 1999, p. 61)
  129. Simon Singh, The Code Book, p. 14-20.
  130. "Al-Kindi, Cryptgraphy, Codebreaking and Ciphers" (HTML). Diperoleh pada 2007-01-12. 
  131. Victor J. Katz (1998). History of Mathematics: An Introduction, p. 255-259. Addison-Wesley. ISBN 0-321-01618-1.
  132. F. Woepcke (1853). Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi. Paris.
  133. Victor J. Katz (1995). "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3), p. 163-174.
  134. J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", Journal of the American Oriental Society 110 (2), p. 304-309.
  135. Syed, M. H. (2005). Islam and Science. Anmol Publications PVT. LTD. ms. 71. ISBN 8-1261-1345-6. 
  136. John J. O'Connor dan Edmund F. Robertson. Abu'l Hasan ibn Ali al Qalasadi di Arkib Sejarah Matematik MacTutor.
  137. 137.0 137.1 S. Pines (September 1964). "The Semantic Distinction between the Terms Astronomy and Astrology according to al-Biruni", Isis 55 (3), p. 343-349.
  138. (Saliba 1994, pp. 60 & 67-69)
  139. 139.0 139.1 139.2 139.3 Dr. A. Zahoor (1997), Abu Raihan Muhammad al-Biruni, Hasanuddin University.
  140. M. Gill (2005). Was Muslim Astronomy the Harbinger of Copernicanism?
  141. Richard Covington (May-June 2007). "Rediscovering Arabic science", Saudi Aramco World, p. 2-16.
  142. 142.0 142.1 142.2 142.3 F. Jamil Ragep (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context 14 (1-2), p. 145–163. Cambridge University Press.
  143. Bernard R. Goldstein (March 1972). "Theory and Observation in Medieval Astronomy", Isis 63 (1), p. 39-47 [40-41].
  144. O. S. Marshall (1950). "Alhazen and the Telescope", Astronomical Society of the Pacific Leaflets 6, pp. 4-11.
  145. Krebs, Robert E. (2004). Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance. Greenwood Press. ms. 196. ISBN 0-3133-2433-6. 
  146. 146.0 146.1 George Saliba (1994). "Early Arabic Critique of Ptolemaic Cosmology: A Ninth-Century Text on the Motion of the Celestial Spheres", Journal for the History of Astronomy 25, p. 115-141 [116].
  147. Toby Huff, The Rise of Early Modern Science, p. 326. Cambridge University Press, ISBN 0-521-52994-8.
  148. Edward Rosen (1985), "The Dissolution of the Solid Celestial Spheres", Journal of the History of Ideas 46 (1), p. 13-31 [19-20, 21].
  149. Roshdi Rashed (2007). "The Celestial Kinematics of Ibn al-Haytham", Arabic Sciences and Philosophy 17, p. 7-55. Cambridge University Press.
  150. Seyyed Hossein Nasr (1964), An Introduction to Islamic Cosmological Doctrines, (Cambridge: Belknap Press of the Harvard University Press), p. 135-136
  151. A. Baker and L. Chapter (2002), "Part 4: The Sciences". In M. M. Sharif, "A History of Muslim Philosophy", Philosophia Islamica.
  152. Derewenda, Zygmunt S. (2007), On wine, chirality and crystallography, Acta Crystallographica Section A: Foundations of Crystallography 64: 246–258 [247], doi:10.1107/S0108767307054293 
  153. John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", Third World Quarterly, Volume 26, Issue 4 & 5, p. 815-830.
  154. Felix Klein-Frank (2001), "Al-Kindi", in Oliver Leaman & Hossein Nasr, History of Islamic Philosophy, p. 174. London: Routledge.
  155. Michael E. Marmura (1965). "An Introduction to Islamic Cosmological Doctrines. Conceptions of Nature and Methods Used for Its Study by the Ikhwan Al-Safa'an, Al-Biruni, and Ibn Sina by Seyyed Hossein Nasr", Speculum 40 (4), p. 744-746.
  156. Robert Briffault (1938). The Making of Humanity, p. 196-197.
  157. Farid Alakbarov (Summer 2001). A 13th-Century Darwin? Tusi's Views on Evolution, Azerbaijan International 9 (2).
  158. 158.0 158.1 Akbar S. Ahmed (1984). "Al-Beruni: The First Anthropologist", RAIN 60, p. 9-10.
  159. H. Mowlana (2001). "Information in the Arab World", Cooperation South Journal 1.
  160. A. Salam (1984), "Islam and Science". In C. H. Lai (1987), Ideals and Realities: Selected Essays of Abdus Salam, 2nd ed., World Scientific, Singapore, p. 179-213.
  161. Toulmin, S. and Goodfield, J. (1965), The Ancestry of science: The Discovery of Time, Hutchinson & Co., London, p. 64 (cf. Contribution of Ibn Sina to the development of Earth Sciences)
  162. Munim M. Al-Rawi and Salim Al-Hassani (November 2002). "The Contribution of Ibn Sina (Avicenna) to the development of Earth sciences". FSTC. Diperoleh pada 2008-07-01. 
  163. L. Gari (2002), "Arabic Treatises on Environmental Pollution up to the End of the Thirteenth Century", Environment and History 8 (4), pp. 475-488.
  164. S. P. Scott (1904), History of the Moorish Empire in Europe, 3 vols, J. B. Lippincott Company, Philadelphia and London.
    F. B. Artz (1980), The Mind of the Middle Ages, Third edition revised, University of Chicago Press, pp 148-50.
    (cf. References, 1001 Inventions)
  165. K. B. Wolf, "Geometry and dynamics in refracting systems", European Journal of Physics 16, p. 14-20, 1995.
  166. R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", Isis 81, p. 464–491, 1990.
  167. H. Salih, M. Al-Amri, M. El Gomati (2005). "The Miracle of Light", A World of Science 3 (3). UNESCO.
  168. George Sarton, Introduction to the History of Science, Vol. 1, p. 710.
  169. Templat:MacTutor
  170. K. A. Waheed (1978). Islam and The Origins of Modern Science, p. 27. Islamic Publication Ltd., Lahore.
  171. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in (Morelon & Rashed 1996, pp. 614-642):
    "Using a whole body of mathematical methods (not only those inherited from the antique theory of ratios and infinitesimal techniques, but also the methods of the contemporary algebra and fine calculation techniques), Arabic scientists raised statics to a new, higher level. The classical results of Archimedes in the theory of the centre of gravity were generalized and applied to three-dimensional bodies, the theory of ponderable lever was founded and the 'science of gravity' was created and later further developed in medieval Europe. The phenomena of statics were studied by using the dynamic apporach so that two trends - statics and dynamics - turned out to be inter-related withina single science, mechanics. The combination of the dynamic apporach with Archimedean hydrostatics gave birth to a direction in science which may be called medieval hydrodynamics. [...] Numerous fine experimental methods were developed for determining the specific weight, which were based, in particular, on the theory of balances and weighing. The classical works of al-Biruni and al-Khazini can by right be considered as the beginning of the application of experimental methods in medieval science."
  172. Duhem, Pierre (1908, 1969). To Save the Phenomena: An Essay on the Idea of Physical theory from Plato to Galileo, p. 28. University of Chicago Press, Chicago.
  173. Seyyed Hossein Nasr, "The achievements of Ibn Sina in the field of science and his contributions to its philosophy", Islam & Science, December 2003.
  174. 174.0 174.1 A. Sayili (1987), "Ibn Sīnā and Buridan on the Motion of the Projectile", Annals of the New York Academy of Sciences 500 (1), p. 477–482:
    "Thus he considered impetus as proportional to weight times velocity. In other words, his conception of impetus comes very close to the concept of momentum of Newtonian mechanics."
  175. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 621, in (Morelon & Rashed 1996, pp. 614-642)
  176. Salah Zaimeche PhD (2005). Merv, p. 5-7. Foundation for Science Technology and Civilization.
  177. Shlomo Pines (1964), "La dynamique d’Ibn Bajja", in Mélanges Alexandre Koyré, I, 442-468 [462, 468], Paris
    (cf. Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4): 521-546 [543])
  178. Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4):521-546 [543])
  179. Ernest A. Moody (1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (I)", Journal of the History of Ideas 12 (2): 163-193 [.
  180. Shlomo Pines (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah". Dictionary of Scientific Biography 1. New York: Charles Scribner's Sons. ms. 26–28. ISBN 0684101149. 
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [528].)
  181. A. C. Crombie, Augustine to Galileo 2, p. 67.
  182. Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", Journal of the History of Ideas 12 (3), p. 375-422 [375].
  183. Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", Journal of the History of Ideas 12 (3), p. 375-422 [380].
  184. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in (Morelon & Rashed 1996, pp. 614-642):
    "Arabic statics was an essential link in the progress of world science. It played an important part in the prehistory of classical mechanics in medieval Europe. Without it classical mechanics proper could probably not have been created."
  185. John William Draper (1878). History of the Conflict Between Religion and Science, p. 154-155, 237. ISBN 1-60303-096-4.
  186. Conway Zirkle (1941). Natural Selection before the "Origin of Species", Proceedings of the American Philosophical Society 84 (1), p. 71-123.
  187. Mehmet Bayrakdar (Third Quarter, 1983). "Al-Jahiz And the Rise of Biological Evolutionism", The Islamic Quarterly. London.
  188. Frank N. Egerton, "A History of the Ecological Sciences, Part 6: Arabic Language Science - Origins and Zoological", Bulletin of the Ecological Society of America, April 2002: 142-146 [143]
  189. Lawrence I. Conrad (1982), "Taun and Waba: Conceptions of Plague and Pestilence in Early Islam", Journal of the Economic and Social History of the Orient 25 (3), pp. 268-307 [278].
  190. Muhammad Hamidullah and Afzal Iqbal (1993), The Emergence of Islam: Lectures on the Development of Islamic World-view, Intellectual Tradition and Polity, p. 143-144. Islamic Research Institute, Islamabad.
  191. J. T. Walbridge (1998). "Explaining Away the Greek Gods in Islam", Journal of the History of Ideas 59 (3), p. 389-403.
  192. Richard Tapper (1995). "Islamic Anthropology" and the "Anthropology of Islam", Anthropological Quarterly 68 (3), Anthropological Analysis and Islamic Texts, p. 185-193.
  193. Zafarul-Islam Khan, At The Threshhold Of A New Millennium – II, The Milli Gazette.
  194. Franz Rosenthal (1950). "Al-Asturlabi and as-Samaw'al on Scientific Progress", Osiris 9, p. 555-564 [559].
  195. Akbar Ahmed (2002). "Ibn Khaldun’s Understanding of Civilizations and the Dilemmas of Islam and the West Today", Middle East Journal 56 (1), p. 25.
  196. 196.0 196.1 H. Mowlana (2001). "Information in the Arab World", Cooperation South Journal 1.
  197. Mohamad Abdalla (Summer 2007). "Ibn Khaldun on the Fate of Islamic Science after the 11th Century", Islam & Science 5 (1), p. 61-70.
  198. Salahuddin Ahmed (1999). A Dictionary of Muslim Names. C. Hurst & Co. Publishers. ISBN 1-85065-356-9.
  199. 199.0 199.1 Dr. S. W. Akhtar (1997). "The Islamic Concept of Knowledge", Al-Tawhid: A Quarterly Journal of Islamic Thought & Culture 12 (3).
  200. I. M. Oweiss (1988), "Ibn Khaldun, the Father of Economics", Arab Civilization: Challenges and Responses, New York University Press, ISBN 0-88706-698-4.
  201. Jean David C. Boulakia (1971), "Ibn Khaldun: A Fourteenth-Century Economist", The Journal of Political Economy 79 (5): 1105-1118.
  202. Historiography. The Islamic Scholar.
  203. Ashy, Majed A. (Fall 1999), Health and Illness from an Islamic Perspective, Journal of Religion and Health 38 (3): 241–57, doi:10.1023/A:1022984718794 
  204. 204.0 204.1 Amber Haque (2004), "Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim Psychologists", Journal of Religion and Health 43 (4): 357-377 [358]
  205. 205.0 205.1 205.2 Nurdeen Deuraseh and Mansor Abu Talib (2005), "Mental health in Islamic medical tradition", The International Medical Journal 4 (2), p. 76-79.
  206. Saoud, R. "The Arab Contribution to the Music of the Western World" (PDF). Diperoleh pada 2007-01-12. 
  207. 207.0 207.1 207.2 Amber Haque (2004), "Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim Psychologists", Journal of Religion and Health 43 (4): 357-377 [361-363]
  208. 208.0 208.1 Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the International Society for the History of Islamic Medicine, 2002 (2), p. 2-9 [7].
  209. Martin-Araguz, A.; Bustamante-Martinez, C.; Fernandez-Armayor, Ajo V.; Moreno-Martinez, J. M. (2002). "Neuroscience in al-Andalus and its influence on medieval scholastic medicine", Revista de neurología 34 (9), p. 877-892.
  210. S Safavi-Abbasi, LBC Brasiliense, RK Workman (2007), "The fate of medical knowledge and the neurosciences during the time of Genghis Khan and the Mongolian Empire", Neurosurgical Focus 23 (1), E13, p. 3.
  211. Nasr, Seyyed Hossein; Oliver Leaman (1996). History of Islamic Philosophy. Routledge. ms. 315 & 1022–1023. ISBN 0415131596. 
  212. 212.0 212.1 Omar Khaleefa (Summer 1999). "Who Is the Founder of Psychophysics and Experimental Psychology?", American Journal of Islamic Social Sciences 16 (2).
  213. 213.0 213.1 Bradley Steffens (2006). Ibn al-Haytham: First Scientist, Chapter 5. Morgan Reynolds Publishing. ISBN 1-59935-024-6.
  214. Muhammad Iqbal, The Reconstruction of Religious Thought in Islam, "The Spirit of Muslim Culture" (cf. [3] and [4])
  215. A. I. Sabra, Situating Arab Science: Locality versus Essence," Isis, 87(1996):654-70; reprinted in Michael H. Shank, ed., The Scientific Enterprise in Antiquity and the Middle Ages," (Chicago: Univ. of Chicago Pr., 2000), pp. 215-231.
  216. F. Jamil Ragep, "Freeing Astronomy from Philosophy: An Aspect of Islamic Influence on Science," Osiris, topical issue on Science in Theistic Contexts: Cognitive Dimensions, n.s. 16(2001):49-50, note 3
  217. Nasr, Seyyed Hossein (1968), "The Principles of Islam", Science and Civilization in Islam, Harvard University Press, diperoleh pada 2008-02-03 
  218. Seyyed Hossein Nasr, Science and Civilization in Islam.
  219. George Saliba (1999). Whose Science is Arabic Science in Renaissance Europe?

Rujukan[sunting | sunting sumber]

Bacaan lanjut[sunting | sunting sumber]

  • Deen, S M (2007). Science Under Islam: Rise, Decline, Revival. LULU. ISBN 978-1-84799-942-9.  More information at [5]
  • Daffa, Ali Abdullah al-; Stroyls, J.J. (1984). Studies in the exact sciences in medieval Islam. New York: Wiley. ISBN 0-471-90320-5. 
  • Hogendijk, Jan P.; Abdelhamid I. Sabra (2003). The Enterprise of Science in Islam: New Perspectives. MIT Press. ISBN 0-262-19482-1.  Reviewed by Robert G. Morrison at [6]
  • Hill, Donald Routledge, Islamic Science And Engineering, Edinburgh University Press (1993), ISBN 0-7486-0455-3
  • Huff, Toby E. (1993, 2nd edition 2003), The Rise of Early Modern Science: Islam, China and the West. New York: Cambridge University Press. ISBN 0-521-52994-8. Reviewed by George Saliba at Seeking the Origins of Modern Science?
  • Huff, Toby E. (2000), "Science and Metaphysics in the Three Religions of the Books", Intellectual Discourse 8 (2): 173-198.
  • Kennedy, Edward S. (1970). "The Arabic Heritage in the Exact Sciences". Al-Abhath 23: 327–344. 
  • Kennedy, Edward S. (1983). Studies in the Islamic Exact Sciences. Syracuse University Press. ISBN 0-8156-6067-7. 
  • Morelon, Régis & Roshdi Rashed (1996), Encyclopedia of the History of Arabic Science, vol. 2-3, Routledge, ISBN 0415020638
  • Saliba, George (2007). Islamic Science and the Making of the European Renaissance. The MIT Press. ISBN 0-262-19557-7. 
  • Seyyed Hossein Nasr (1976). Islamic Science: An Illustrated Study. Kazi Publications. ISBN 1-56744-312-5. 
  • Seyyed Hossein Nasr (2003). Science & Civilization in Islam (edisi ke-2nd). Islamic Texts Society. ISBN 1-903682-40-1. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 1: Quranwissenschaften, Hadit, Geschichte, Fiqh, Dogmatik, Mystik (dalam bahasa German). Brill. ISBN 90-04-04153-2. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 2: Poesie. Bis CA. 430 H (dalam bahasa German). Brill. ISBN 90-04-03131-6. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 3: Medizin-Pharmazie Zoologie-Tierheilkunde (dalam bahasa German). Brill. ISBN 90-04-03131-6. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 4: Alchimie-Chemie Botanik-Agrikultur (dalam bahasa German). Brill. ISBN 90-04-02009-8. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 5: Mathematik (dalam bahasa German). Brill. ISBN 90-04-04153-2. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 6: Astronomie (dalam bahasa German). Brill. ISBN 90-04-05878-8. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 7: Astrologie-Meteorologie Und Verwandtes (dalam bahasa German). Brill. ISBN 90-04-06159-2. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 8: Lexikographie. Bis CA. 430 H (dalam bahasa German). Brill. ISBN 90-04-06867-8. 
  • Sezgin, Fuat (1997). Geschichte Des Arabischen Schrifttums 9: Grammatik. Bis CA. 430 H (dalam bahasa German). Brill. ISBN 90-04-07261-6. 
  • Sezgin, Fuat (2000). Geschichte Des Arabischen Schrifttums X: Mathematische Geographie und Kartographie im Islam und ihr Fortleben im Abendland. Historische Darstellung. Teil 1 (dalam bahasa German). Frankfurt am Main. 
  • Sezgin, Fuat (2000). Geschichte Des Arabischen Schrifttums XI: Mathematische Geographie und Kartographie im Islam und ihr Fortleben im Abendland. Historische Darstellung. Teil 2 (dalam bahasa German). Frankfurt am Main. 
  • Sezgin, Fuat (2000). Geschichte Des Arabischen Schrifttums XII: Mathematische Geographie und Kartographie im Islam und ihr Fortleben im Abendland. Historische Darstellung. Teil 3 (dalam bahasa German). Frankfurt am Main. 
  • Suter, Heinrich (1900). Die Mathematiker und Astronomen der Araber und ihre Werke. Abhandlungen zur Geschichte der Mathematischen Wissenschaften Mit Einschluss Ihrer Anwendungen, X Heft. Leipzig. 

Pautan luar[sunting | sunting sumber]