Perbezaan antara semakan "Punca kuasa dua 2"

Jump to navigation Jump to search
1,786 bait ditambah ,  13 tahun lalu
 
==Perwakilan siri dan hasil darab==
Pengenalan kos(π/4) = sin(π/4) = √2/2, bersama perwakilan hasil darab tak terhingga bagi sin dan kosin membawa kepada hasil darab seperti
 
:<math>\frac{1}{\sqrt 2} = \prod_{k=0}^\infty
\left(1-\frac{1}{(4k+2)^2}\right) =
\left(1-\frac{1}{4}\right)
\left(1-\frac{1}{36}\right)
\left(1-\frac{1}{100}\right) \cdots</math>
 
dan
 
:<math>\sqrt{2} =
\prod_{k=0}^\infty
\frac{(4k+2)^2}{(4k+1)(4k+3)} =
\left(\frac{2 \cdot 2}{1 \cdot 3}\right)
\left(\frac{6 \cdot 6}{5 \cdot 7}\right)
\left(\frac{10 \cdot 10}{9 \cdot 11}\right)
\left(\frac{14 \cdot 14}{13 \cdot 15}\right) \cdots</math>
 
atau bersamaan dengan,
 
:<math>\sqrt{2} =
\prod_{k=0}^\infty
\left(1+\frac{1}{4k+1}\right)
\left(1-\frac{1}{4k+3}\right)
=
\left(1+\frac{1}{1}\right)
\left(1-\frac{1}{3}\right)
\left(1+\frac{1}{5}\right)
\left(1-\frac{1}{7}\right) \cdots.</math>
 
Nombor tersebut boleh dinyatakan dengan mengambil [[siri Taylor]] bagi fungsi trigonometri. Contohnya, siri bagi kos(π/4) adalah
 
:<math>\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac{\pi}{4}\right)^{2k}}{(2k)!}.</math>
 
Siri Taylor bagi √(1+''x'') dengan ''x'' = 1 memberikan
 
:<math>\sqrt{2} = \sum_{k=0}^\infty (-1)^{k+1} \frac{(2k-3)!!}{(2k)!!} =
1 + \frac{1}{2} - \frac{1}{2\cdot4} + \frac{1\cdot3}{2\cdot4\cdot6} -
\frac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8} + \cdots.</math>
 
Penumpuan siri ini boleh dicepatkan dengan [[penukaran Euler]], menghasilkan
 
:<math>\sqrt{2} = \sum_{k=0}^\infty \frac{(2k+1)!}{(k!)^2 2^{3k+1}} = \frac{1}{2} +\frac{3}{8} +
\frac{15}{64} + \frac{35}{256} + \frac{315}{4096} + \frac{693}{16384} + \cdots.</math>
 
Tidak diketahui sama ada √2 boleh diwakilikan dengan rumus BBP-type. Rumus BBP-type digunakan untuk π√2 dan √2 ln(1+√2). [http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf]
 
==Perwakilan pecahan lanjar==
47,968

suntingan

Menu pandu arah