Bilangan ajaib: Perbezaan antara semakan

Daripada Wikipedia, ensiklopedia bebas.
Kandungan dihapus Kandungan ditambah
TXiKiBoT (bincang | sumb.)
TXiKiBoT (bincang | sumb.)
k bot menambah: ar:عدد سحري
Baris 34: Baris 34:
[[Category:Keradioaktifan]]
[[Category:Keradioaktifan]]


[[ar:عدد سحري]]
[[de:Magische Zahl (Physik)]]
[[de:Magische Zahl (Physik)]]
[[en:Magic number (physics)]]
[[en:Magic number (physics)]]

Semakan pada 16:22, 21 Mei 2009

Dalam fizik nuklear, bilangan ajaib merupakan bilangan nukleon (sama adaproton atau neutron) yang perlu disusun untuk membentuk petala lengkap dalam nukleus atom. Bilangan ajaib yang tujuh itu sehingga 2007 pada

2, 8, 20, 28, 50, 82, 126.

Nukleus atom yang mengandungi bilangan ajaib bagi nukleon mempunyai purata tenaga ikatan per nukleon yang tinggi berbanding yang dijangka melalui ramalan seperti rumus jisim separa empirik dan lebih stabil untuk tidak berlakunya pereputan nuklear.

Kestabilan yang aneh bagi isotop yang mempunyai bilangan ajaib bermakna unsur transuranium boleh dicipta dengan menggunakan nukleus yang sangat besar tetapi tidak tertakluk kepada pereputan radioaktif yang terlampau cepat yang lazimnya berlaku pada nombor atom yang tinggi (hingga 2007, isotop yang paling lama hidup yang diketahui antara semua unsur antara 110 dan 120 bertahan hanya 12 min., seterusnya 22 saat). Isotop yang besar mempunyai bilangan ajaib bagi nukleon yang dikatakan wujud dalam pulau kestabilan. Tidak seperti bilangan ajaib 2-126, yang direalisasikan dalam nukleus sfera, pengiraan melalui teori meramalkan bahawa nukleus dalam pulau kestabilan adalah tidak berbentuk. Sebelum ini diketahui, bilangan ajaib yang lebih tinggi, seperti 184, dikatakan mempunyai bentuk sfera seperti yang diramalkan oleh pengiraan mudah. Kini dipercayai bahawa turutan bilangan ajaib sfera tidak boleh dipanjangkan begitu rupa.

Keajaiban berganda

Nukleus yang mempunyai kedua-dua proton dan neutron (nombor atom) yang sama bilangannya dengan bilangan ajaib dipanggil "ajaib berganda", dan amatlah stabil dari pereputan. Contoh bagi isotop ajaib berganda termasuklah helium-4 (4He), oksigen-16 (16O), kalsium-40 (40Ca), kalsium-48 (48Ca), nikel-48 (48Ni) dan plumbum-208 (208Pb). Yang berikutnya ialah ajaib berganda tetapi tidak mempunyai kesal luar biasa terhadap kestabilan mereka: stanum-100 (100Sn) & stanum-132 (132Sn). Maka, bukanlah kebetulan yang helium-4 (4He) merupakan nukleus yang paling banyak (dan stabil) dalam alam semesta[1] dan 208Pb merupakan nuklid terberat yang stabil.

Kedua-dua kalsium-48 (48Ca) dan nikel-48 (48Ni) adalah ajaib berganda kerana kalsium-48 mempunyai 20 proton dan 28 neutron manakala nikel-48 mempunyai 28 proton dan 20 neutron. Kalsium-48 adalah kaya neutron walaupun bagi unsur ringan, tetapi stabil kerana menjadi ajaib berganda. Begitu juga nikel-48, yang ditemui pada 1999, merupakan isotop yang paling kaya dengan proton[2].

Pada Disember 2006, hassium-270 (270Hs) ditemui oleh satu pasukan saintis antarabangsa yang diketuai oleh Universiti Teknikal Munich mempunyai separuh hayat yang luar biasa lama iaitu selama 22 saat. Hassium-270 menunjukkan pembentukan pulau kestabilan, dan mungkin juga ajaib berganda[3].


Terbitan

Bilangan ajaib diperoleh dari kajian empirik; walau bagaimanapun, jika bentuk keupayaan nuklear diketahui, maka persamaan Schrödinger boleh diterbitkan bagi gerakan nukleon dan aras tenaga. Petala nuklear dikatakan wujud apabila pemisahan antara aras tenaga dikatakan lebih besar dari pemisahan min tempatan.

Dalam model petala bagi nukleus, bilangan ajaib adalah bilangan nukleon apabila petala dipenuhi. Sebagai contoh, bilangan ajaib 8 berlaku apabila aras tenaga 1s1/2, 1p3/2, 1p1/2 diisi seolah-olah wujud jurang tenaga yang besar antara 1p1/2 dan aras tenaga yang tertinggi seterusnya 1d5/2. Nilai empirik boleh dihasilkan dengan menggunakan model petala klasik dengan tindak balas spin-petala yang kuat.

See also

Pautan luar

  1. ^ Hyperphysics
  2. ^ W., P. (October 23, 1999). "Twice-magic metal makes its debut - isotope of nickel". Science News. Dicapai pada 2006-09-29.
  3. ^ Mason Inman (2006-12-14). ""A Nuclear Magic Trick"". Physical Review Focus. Dicapai pada 2006-12-25.