Ruang Hilbert

Daripada Wikipedia, ensiklopedia bebas.
Pergi ke pandu arah Pergi ke carian
Keadaan rentetan bergetar boleh dimodelkan sebagai titik dalam ruang Hilbert. Penguraian rentetan bergetar menjadi getarannya dalam nada yang berbeza diberikan oleh unjuran titik ke paksi koordinat dalam ruang.

Dalam matematik, ruang Hilbert (dinamakan sempena David Hilbert) membenarkan pengitlak kaedah algebra dan kalkulus linear daripada ruang Euclidean dua dimensi dan tiga dimensi kepada ruang yang mungkin mempunyai dimensi tak terhingga. Ruang Hilbert ialah ruang vektor dilengkapi dengan operasi produk dalaman, yang membolehkan mentakrifkan fungsi jarak dan keserenjang (dikenali sebagai ortogonal dalam konteks ini). Tambahan pula, ruang Hilbert adalah lengkap untuk jarak ini, yang bermaksud terdapat had yang mencukupi dalam ruang untuk membolehkan teknik kalkulus digunakan.

Rujukan[sunting | sunting sumber]

  • Bachman, George; Narici, Lawrence; Beckenstein, Edward (2000), Fourier and wavelet analysis, Universitext, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98899-3, MR 1729490.
  • Bers, Lipman; John, Fritz; Schechter, Martin (1981), Partial differential equations, American Mathematical Society, ISBN 978-0-8218-0049-2.
  • Bourbak, Nicolasi (1986), Spectral theories, Elements of mathematics, Berlin: Springer-Verlag, ISBN 978-0-201-00767-1.
  • Bourbaki, Nicolas (1987), Topological vector spaces, Elements of mathematics, Berlin: Springer-Verlag, ISBN 978-3-540-13627-9.
  • Boyer, Carl Benjamin; Merzbach, Uta C (1991), A History of Mathematics (ed. 2nd), John Wiley & Sons, Inc., ISBN 978-0-471-54397-8.
  • Brenner, S.; Scott, R. L. (2005), The Mathematical Theory of Finite Element Methods (ed. 2nd), Springer, ISBN 978-0-387-95451-6.
  • Buttazzo, Giuseppe; Giaquinta, Mariano; Hildebrandt, Stefan (1998), One-dimensional variational problems, Oxford Lecture Series in Mathematics and its Applications, 15, The Clarendon Press Oxford University Press, ISBN 978-0-19-850465-8, MR 1694383.
  • Clarkson, J. A. (1936), "Uniformly convex spaces", Trans. Amer. Math. Soc., 40 (3): 396–414, doi:10.2307/1989630, JSTOR 1989630.
  • Courant, Richard; Hilbert, David (1953), Methods of Mathematical Physics, Vol. I, Interscience.
  • Dieudonné, Jean (1960), Foundations of Modern Analysis, Academic Press.
  • Dirac, P.A.M. (1930), The Principles of Quantum Mechanics, Oxford: Clarendon Press.
  • Dunford, N.; Schwartz, J.T. (1958), Linear operators, Parts I and II, Wiley-Interscience.
  • Duren, P. (1970), Theory of Hp-Spaces, New York: Academic Press.
  • Folland, Gerald B. (2009), Fourier analysis and its application (ed. Reprint of Wadsworth and Brooks/Cole 1992), American Mathematical Society Bookstore, ISBN 978-0-8218-4790-9.
  • Folland, Gerald B. (1989), Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, ISBN 978-0-691-08527-2.
  • Fréchet, Maurice (1907), "Sur les ensembles de fonctions et les opérations linéaires", C. R. Acad. Sci. Paris, 144: 1414–1416.
  • Fréchet, Maurice (1904), "Sur les opérations linéaires", Transactions of the American Mathematical Society, 5 (4): 493–499, doi:10.2307/1986278, JSTOR 1986278.
  • Giusti, Enrico (2003), Direct Methods in the Calculus of Variations, World Scientific, ISBN 978-981-238-043-2.
  • Grattan-Guinness, Ivor (2000), The search for mathematical roots, 1870–1940, Princeton Paperbacks, Princeton University Press, ISBN 978-0-691-05858-0, MR 1807717.
  • Halmos, Paul (1957), Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Pub. Co
  • Halmos, Paul (1982), A Hilbert Space Problem Book, Springer-Verlag, ISBN 978-0-387-90685-0.
  • Hewitt, Edwin; Stromberg, Karl (1965), Real and Abstract Analysis, New York: Springer-Verlag.
  • Hilbert, David; Nordheim, Lothar Wolfgang; von Neumann, John (1927), "Über die Grundlagen der Quantenmechanik", Mathematische Annalen, 98: 1–30, doi:10.1007/BF01451579, S2CID 120986758.
  • Holevo, Alexander S. (2001), Statistical Structure of Quantum Theory, Lecture Notes in Physics, Springer, ISBN 3-540-42082-7, OCLC 318268606.
  • Kac, Mark (1966), "Can one hear the shape of a drum?", American Mathematical Monthly, 73 (4, part 2): 1–23, doi:10.2307/2313748, JSTOR 2313748.
  • Kadison, Richard V.; Ringrose, John R. (1997), Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, 15, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0819-1, MR 1468229.
  • Kadison, Richard V.; Ringrose, John R. (1983), Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory, New York: Academic Press, Inc.

Pautan luar[sunting | sunting sumber]