Seramik

Daripada Wikipedia, ensiklopedia bebas.
Lompat ke: pandu arah, cari

Perkataan seramik diambil dari perkataan bahasa Inggeris ( ceramic ) berasal dari Yunani, dan secara harafiahnya merujuk kepada kepada semua bentuk tanah liat. Bagaimanapun, penggunaan istilah moden meluaskan penggunaannya untuk merangkumi bahan bukan logam bukan organik. Sehingga tahun 1950an, yang paling penting adalah tanah liat traditional, yang dijadikan barangan tembikar ( pottery ), batu bata, jubin, dan seumpamanya, bersama dengan simen dan kaca. Kraf tradisional dijelaskan dalam rencana tembikar.

Secara sejarah, barangan seramik adalah keras, poros, dan mudah pecah. Kajian mengenai seramik sebahagian besarnya bertujuan untuk mengurangkan masalah tersebut, dan meningkatkan kekuatan bahan seramik.

Contoh bahan seramik[sunting | sunting sumber]

  • Silikon nitride (Si3N4), yang digunakan sebagai serbuk pengkakis.
  • Boron karbide (B4C), yang digunakan dalam perisai helikopter dan kereta kebal.
  • Silikon karbide (SiC), yang digunakan sebagai ( succeptor ) dalam ketuhar mikrowave, bahan pengkakis biasa digunakan, dan sebagai bahan pembalikan.
  • Magnesium diboride (MgB2), yang merupakan superkonduktor luar biasa.
  • Zink oksida (ZnO), yang merupakan semikonduktor, dan digunakan dalam penghasilan ( varistor ).
  • Ferrite (Fe3O4), yang merupakan ferrimagnetism dan digunakan sebagai teras transformer elektrik dan ingatan teras magnetik ( magnetic core memory ).
  • Steatite digunakan sebagai penebat elektrik.
  • Batu bata (kebanyakannya adalah aluminum silikat ), digunakan dalam pembinaan.
  • Uranium oksida (UO2), digunakan dalam reaktor nuklear.
  • Yttrium barium kuprum oksida (YBa2Cu3O7-x), superkonduktor bersuhu tinggi.

Ciri-ciri seramik[sunting | sunting sumber]

Ciri-ciri mekanikal[sunting | sunting sumber]

Bahan seramik biasanya ( bahan ionic atau berkaca. Kedua-dua bahan ini hampir selalunya pecah sebelum sebarang kecacatan plastik ( plastic deformation ) berlaku, yang menyebabkan bahan ini kurang kukuh. Tambahan lagi, disebabkan bahan ini cenderung berciri poros, liang dan kecacatan mikroskopik bertindak sebagai penumpu tekanan, mengurangkan kekuatan, dan tensile strength. Kedua-dua ini memberikan kecenderungan kepada bahan seramik gagal keseluruhannya dan berkecai, berbanding dengan kegagalan perlahan-lahan bahan logam yang membengkok sebelum patah.

Bahan ini menunjukkan kecacatan plastik (boleh membengkok dan bukannya patah). Bagaimanapun, akibat struktur kaku bahan membentuk kristal ( crystalline ), terdapat hanya sedikit sistem gelinciran untuk pengkehelan berlaku, oleh itu ia berlaku secara perlahan-lahan. Dengan bahan tidak berkristal ( non-crystalline ) bahan ber(kaca), pengaliran kelikatan ( viscous ) merupakan sumber kecacatan plastik, dan juga amat perlahan. Ia dengan itu diabaikan dalam kebanyakan appplikasi bahan seramik

Bahan seramik amat kukuh dibawah tekanan, dan mampu beroperasi pada suhu tinggi. Kekerasannya menjadikan ia sesuai sebagai bahan pengkakis, dan mata pemotong dalam perkakasan.

Ciri-ciri pembalikan[sunting | sunting sumber]

Sesetengah bahan seramik mampu menahan suhu amat tinggi tanpa kehilangan ketahanannya. Bahan ini dikenali sebagai bahan refraktori ( refractory material ). Ia biasanya mempunyai pengalir haba yang rendah, dan oleh itu digunakan sebagai penebat haba ( thermal insulators ). Sebagai contoh, bahagian perut pesawat ulang alik angkasa ( Space Shuttle ) diperbuat daripada tile seramik yang melindungi pesawat angkasa daripada suhu tinggi yang dihadapi ketika kemasukan semula ke atmospera bumi.

Keperluan paling penting untuk bahan refraktori adalah ia tidak akan lembik atau cair, dan ia kekal tidak aktif pada suhu yang diingini. Keperluan akhir berdasarkan pada kedua-dua pereputan diri dan reaksi dengan bahan campuran lain yang mungkin hadir, setiap satunya boleh membahayakan.

Keporosan menjadi lebih berkait dengan refraktori ( refractories ). Apabila keporosan dikurangkan, kekuatan, keupayaan daya ampu ( load-bearing ), dan rintangan persekitaran menurun apabila bahan menjadi semakin padat. Bagaimanapun, apabila kepadatan meningkatkan ketahanan kepada kejutan haba thermal (keretakan akibat pertukaran suhu mengejut) dan ciri-ciri penebatah dikurangkan. Banyak bahan digunakan dalam bentuk amat poros, dan ia bukannya satu perkara luar biasa untuk mendapati dua bahan digunakan: lapisan poros, dengan ciri-ciri penebat yang baik, dengan salutan nipis bahan lebih padat untuk membekalkan ketahanan.

Ia adalah memeranjatkan bahawa bahan ini boleh digunakan pada suhu yang ia berada dalam keadaan separuh cair. Sebagai contoh, batu bata silika yang digunakan untuk melapis ketuhar menghasilkan besi digunakan pada suhu sehingga 1650°C (3000°F), di mana sebahagian batu bata akan cair. Mereka bentuk untuk situasi sebegitu tidak menghairankan jika ia memerlukan pengawalan yang agak terperinci mengenai semua sudut pembinaan dan kegunaan.

Ciri-ciri elektrik[sunting | sunting sumber]

Salah satu kemajuan dalam bidang bahan seramik adalah penggunaan hasil seramik dalam perkakasan elektrik, di mana ia menunjukkan pelbagai ciri-ciri berlainan yang menghairankan.

Penebat dan tingkah laku dielekctrik ( dielectric )[sunting | sunting sumber]

Kebanyakan bahan seramik tidak mempunyai pembawa cas boleh gerak, dan oleh kerana itu tidak mengalirkan elektrik. Apabila digabungkan dengan ketahanannya, keadaan ini mendorong kepada penggunaannya dalam penghasilan kuasa dan transmisi ( transmission ).

Talian kuasa sering di sokong dari pylons oleh cakera porcelain, yang cukup penebat untuk menangani panahan kilat, dan mempunyai kekuatan mekanikal untuk memegang kabel.

Sub-kategori dari ciri-ciri penebatnya adalah dielectric. Dielectric yang bagus akan mengekalkan medan elektrik melaluinya, tanpa menyebabkan kehilangan kuasa. Ini adalah penting untuk penghasilan kapasitor. Dielectrics seramik digunakan dalam dua kawasan. Yang pertama adalah frekuensi tinggi kehilangan rendah dielectrics, digunakan dalam aplikasi seperti ketuhar gelombang ( microwave ) dan pemancar radio. Yang lain adalah bahan dengan konstant constants dielectric tinggi (ferroelectrik). Walaupun dielectrics seramik kurang elok berbanding pilihan lain untuk kebanyakan tujuan, ia memenuhi kedua bahagian dengan baiknya.

Ferroelektrik, piezoelektrik dan pyroelektrik[sunting | sunting sumber]

Bahan ferroelektrik adalah sesuatu yang boleh menghasilkan kepolaran ( polarization ) secara spontan tanpa medan elektrik. Bahan ini menunjukkan medan elektrik kekal, dan ini merupakan sumber konstant dielektrik yang amat tinggi ( extremely high dielectric constants ).

Bahan piezoelektrik adalah bahan dimana medan elektrik boleh ditukar atau dihasilkan dengan mengenakan tekanan kepada bahan tersebut. Ia digunakan dalam pelbagai kegunaan, khususnya sebagai transduker - menukar pergerakan kepada signal elektrik, atau sebaliknya. Ia digunakan dalam peranti seperti mikrophone, penjana ultrasound, dan pengukur tekanan ( strain gauges ).

Bahan pyroelektrik menghasilkan medan elektrik apabila dipanaskan. Sesetengah pyroelektrik seramik amat sensitif sehinggakan ia dapat mengesan perubahan suhu disebabkan seseorang memasuki bilik (sekitar 40 micro Kelvin). Malangnya, peranti sedemikian tidak tepat, jadi ia sering digunakan secara berkembar - satu tertutup, satu terbuka - dan hanya perbezaan antara keduanya digunakan.

Semikonduktor[sunting | sunting sumber]

Terdapat beberapa jenis seramik yang merupakan semikonduktor. Kebanyakan daripadanya adalah oksida besi peralihan ( transition metal oxides ) yang semikonduktor II-VI, seperti zinc oksida.

Walaupun terdapat perbincangan untuk menghasilkan LED biru dari zink oksida, pakar seramik lebih berminat dalam ciri-ciri elektrik yang menunjukkan kesan sempadan grain ( grain boundary effects ).

Peranti yang paling digunakan secara meluas adalah varistor. Peranti ini menunjukkan ciri-ciri luar biasa rintangan negetif. Apabila voltage melalui peranti ini mencapai tahap sempadan tertentu, terdapat kegagalan struktur elektrik dalam sekitar sempadan grain, yang menyebabkan rintangan elektriknya menurun daripada beberapa mega-ohm turun kepada beberapa ratus sahaja. Kebaikannya adalah ia dapat mengyingkirkan banyak tenaga, dan reset secara sendiri - selepas voltage melintasi peranti itu turun di bawah had, rintangannya kembali naik.

Ini menjadikan ia sesuai untuk applakasi pelindung-peningkatan ( surge-protection ). Kerana terdapat kawalan melebihi had voltage dan ketahanan kuasa, ia digunakan dalam pelbagai applakasi. Demonstrasi terbaik mengenai kebolehannya adalah di sub stesyen elektrik, dimana ia digunakan untuk melindungi infrastruktur daripada panahan kilat. Ia mempunyai tindakbalas pantas, penyelenggaraan mudah, dan tidak mudah rosak akibat penggunaan, menjadikan ia sebagai peranti terbaik untuk applikasi ini.

Seramik semikonduktor juga digunakan sebagai pengesan gas. Apabila pelbagai gas melalui seramik polikristal polycrystalline, rintangan elektriknya bertukar. Peranti yang murah dapat dihasilkan apabila ia diselaraskan kepada campuran gas yang berkenaan.

Superkonduktiviti[sunting | sunting sumber]

Di bawah sesetengah keadaan, seperti tahap suhu amat rendah, sesetengah seramik menunjukkan superkonduktiviti. Sebab sebenarnya tidaklah diketahui, tetapi terdapat dua keluarga utama seramik superkonduktiviti.

Tembaga oksida ( copper oxides ) rumit diwakili oleh tembaga oksida Yttrium barium Yttrium barium copper oxide, sering diringkaskan kepada YBCO, atau 123 (menurut ratio logam dalam formula stoichiometriknya [[YBa2Cu3O7-x]]). Ia amat terkenal kerana ia mudah dihasilkan, penghasilannya tidak membabitkan logam merbahaya, dan ia mempunyai suhu tahap ( transition ) superkonduktiviti pada 90K (yang lebih tinggi dari suhu nitrogen cecair (77K)). x dalam formula ini merujuk kepada fakta bahawa stoichiometrik sepenuhnya YBCO bukannya superkonduktor, jadi ia mesti dalam keadaan kurang oksigen sedikit, dengan x biasanya sekitar 0.3.

Keluarga utama lain bagi seramik superkonduktiviti adalah magnesium diboride. Pada masa ini ia terletak dalam keluarga tersendiri. Ciri-cirinya tidaklah mengkagumkan sangat, tetapi secara kimia amat berlainan dengan superkonduktor yang lain dari segi ia bukannya tembaga oksida rumit ataupun logam. Disebabkan perbezaan ini, diharapkan kajian mengenai bahan ini kan memberikan kesedaran asas kepada phenomena superkonduktiviti.

Memproses bahan seramik[sunting | sunting sumber]

Seramik bukan-berkristal ( Non-crystalline ), asal kaca, cenderung terbentuk dari cecair. Kaca dibentuk ketika cair sepenuhnya, melalui acuan, atau ketika dalam bentuk lembik, melalui cara meniup ke dalam acuan.

Bahan seramik berkristal tidak sesuai untuk bentuk pemprosesan yang luas. Kaedah untuk mengendalikan mereka biasanya terbahagi kepada dua - sama ada menjadikan seramik dalam bentuk yang dikehendaki, melalui reaksi ketika itu ( in situ ), atau dengan membentuk serbuk dalam bentuk diingini, dan kemudian ( sintering ) untuk membentuk pepejal. Beberapa kaedah pula menggunakan pendekatan gabungan antara kedua kaedah

pembuatan di situ. ( In situ )[sunting | sunting sumber]

Kegunaan utama kaedah ini adalah penghasilan simen dan konkrik ( concrete ). Di sini, serbuk kering dicampur dengan air, dan memulakan reaksi hydrasi, yang menghasilkan kristal saling berpaut panjang sekeliling aggregates. Lama-kelamaan, ini akan menghasilkan seramik pejal.

Masalah utama dengan kaedah ini adalah kebanyakan reaksi terlalu pantas untuk pengaulan yang baik, yang menghalang pembinaan besar-besaran. Bagaimanapun, sistem berskala kecil boleh dilakukan dengan teknik deposit ( deposition techniques ), di mana pelbagai bahan diletakkan di atas bahan asas ( substrate ), dan bertindakbalas dan membentuk seramik atas bahan asas ( substrate ). Teknik yang dipinjam dari industri semikonduktor, seperti chemical vapour deposition, dan amat berguna untuk lapisan.

Kaedah ini cenderung untuk menghasilkan seramik yang pejal tetapi agak lambat.

Kaedah berasaskan pembakaran sintering[sunting | sunting sumber]

Prinsip kaedah berasaskan pembakaran ( sintering ) adalah mudah. Apabila objek yang dibentuk secara kasar (dikenali sebagai "bentuk hijau - green body"), ia dibakar di dalam relau, di mana proses penyepaduan diffusion menyebabkan bentuk hijau mengecut, dan menutup liang padanya, menghasilkan bahan yang lebih kukuh dan padu. Pembakaran ini dilakukan pada suhu rendah dari tahap cair seramik. Keporosan akan hampir sentiasa tinggal, tetapi kelebihan kaedah ini adalah badan hijau boleh dibentuk dalam sebarang bentuk yang diingini, dan masih boleh di bakar. Ini menjadikan kaedah ini kaedah paling mudah.

Terdapat beribu cara penghalusan dalam proses ini. Sebahagian yang biasa termasuk menekan badan hijau untuk memberikan penyepaduan densification permulaan awal dan mengurangkan masa pembakaran yang diperlukan. Kadangkala pelekat organik ditambah bagi mengekalkan bentuk badan hijau, yang akan hilang terbakar ketika pembakaran. Kadang kala pelicin organik ditambah ketika pemampatan untuk meningkatkan lagi penyepaduan. Bukanlah sesuatu yang luarbiasa bagi menggabungkan kesemua tersebut, dan menambah pengikat dan pelicin kepada serbuk dan dimampatkan sebelum dibakar.

Adunan juga boleh digunakan bagi menggantikan serbuk, sebelum dibentuk dengan acuan kepada bentuk yang diingini, dikeringkan dan dibakar. Malah, barangan tembikar traditional dihasilkan melalui kaedah ini, menggunakan adunan yang dibentuk dengan menggunakan tangan.

Jika campuran pelbagai bahan digunakan bersama sebagai seramik, kadang kala suhu pembakaran melebihi tahap cair salah satu bahan campuran * pembakaran fasa cair. Ini menghasilkan tempoh pembakaran yang lebih pendek berbanding pembakaran bentuk pejal.

Beberapa applikasi seramik[sunting | sunting sumber]

Beberapa abad dahulu, penyelidikan di syarikat Toyota telah menghasilkan enjin seramik yang mampu bergerak pada suhu sehingga 6000°F (3300°C). Enjin seramik tidak memerlukan sistem penyejukan dan dengan itu membenarkan penyingkiran sistem penyejukan, pengurang berat yang utama, dan penjimatan minyak yang lebih baik. Keberkesanan bahanapi ( Fuel efficiency ) enjik juga meningkat pada suhu lebih tinggi. Dalam enjin logam biasa, kebanyakan tenaga yang dibebaskan dari bahan api mesti dibebaskan sebagai haba buangan agar bahagian logam dalam enjin tidak cair.

Walaupun dengan kelebihan ini, enjin sebegitu tidak dihasilkan kerana penghasilan bahagian enjin seramik amat sukar. Kecacatan pada seramik akan mengakibatkan keretakan enjin. Enjin sebegitu hanya dapat dihasilkan dalam makmal penyelidikan, tetapi kesukaran untuk penghasilan secara besar-besaran menghalang enjin seramik daripada menjadi barangan pengilangan yang terjamin mutu pengeluarannya.