Pergi ke kandungan

Templat:Reg polyhedra db

Daripada Wikipedia, ensiklopedia bebas.

{{{{{1}}}|{{{2}}}|

|T-name=Tetrahedron|T-image=tetrahedron.png|T-image2=tetrahedron.jpg|T-image3=tetrahedron.gif|T-dimage=tetrahedron.png| |T-Wythoff=3 | 2 3| |T-W=1|T-U=01|T-K=06|T-C=15|T-V=4|T-E=6|T-F=4|T-Fdetail=4{3}|T-chi=2| |T-vfig=3.3.3|T-vfigimage=tetrahedron_vertfig.png|T-group=Td| |T-B=Tet|T-dual=Tetrahedron|T-dihedral=70.528779° = arccos(1/3)| |T-special=Deltahedron|T-schl={3,3}|T-schl2=| |T-CD=

|O-name=Octahedron|O-image=octahedron.png|O-image2=octahedron.jpg|O-image3=octahedron.gif|O-dimage=hexahedron.png| |O-Wythoff=4 | 2 3| |O-W=2|O-U=05|O-K=10|O-C=17|O-V=6|O-E=12|O-F=8|O-Fdetail=8{3}|O-chi=2| |O-vfig=3.3.3.3|O-vfigimage=octahedron_vertfig.svg|O-group=Oh| |O-B=Oct|O-dual=Cube|O-dihedral=109.47122° = arccos(-1/3)| |O-special=Deltahedron| |O-schl={3,4}|O-schl2=and |O-CD=

|C-name=Hexahedron|C-image=hexahedron.png|C-image2=hexahedron.jpg|C-image3=hexahedron.gif|C-dimage=octahedron.png| |C-altname=(Hexahedron)
|C-Wythoff=3 | 2 4| |C-W=3|C-U=06|C-K=11|C-C=18|C-V=8|C-E=12|C-F=6|C-Fdetail=6{4}|C-chi=2|C-group=Oh| |C-vfig=4.4.4|C-vfigimage=Cube_vertfig.png| |C-B=Cube|C-dual=Octahedron|C-dihedral=90° |C-special=Zonohedron|C-schl={4,3}|C-schl2=| |C-CD=

|D-name=Dodecahedron|D-image=dodecahedron.png|D-image2=dodecahedron.jpg|D-image3=dodecahedron.gif|D-dimage=icosahedron.png| |D-Wythoff=3 | 2 5| |D-W=5|D-U=23|D-K=28|D-C=26|D-V=20|D-E=30|D-F=12|D-Fdetail=12{5}|D-chi=2| |D-vfig=5.5.5|D-vfigimage=dodecahedron_vertfig.png|D-group=Ih| |D-B=Doe|D-dual=Icosahedron|D-dihedral=116.56505° = arccos(-1/√5)| |D-special=|D-schl={5,3}|D-schl2=| |D-CD=

|I-name=Icosahedron|I-image=icosahedron.png|I-image2=icosahedron.jpg|I-image3=icosahedron.gif|I-dimage=dodecahedron.png| |I-Wythoff=5 | 2 3 | |I-W=4|I-U=22|I-K=27|I-C=25|I-V=12|I-E=30|I-F=20|I-Fdetail=20{3}|I-chi=2| |I-vfig=3.3.3.3.3|I-vfigimage=icosahedron_vertfig.png|I-group=Ih| |I-B=Ike|I-dual=Dodecahedron|I-dihedral=138.189685°| |I-special=Deltahedron| |I-schl={3,5}|I-schl2=and |I-CD=

|gI-name=Great icosahedron|gI-image=Great icosahedron.png|gI-image3=GreatIcosahedron.gif|gI-dimage=Great stellated dodecahedron.png| |gI-vfigimage=Great icosahedron_vertfig.png|gI-vfig=(35)/2| |gI-Wythoff=5/2 | 2 3| |gI-altname=(16th stellation of icosahedron)| |gI-W=41|gI-U=53|gI-K=58|gI-C=69| |gI-V=12|gI-E=30|gI-F=20|gI-Fdetail=20{3}| |gI-chi=2|gI-group=Ih| |gI-B=Gike|gI-dual=Great stellated dodecahedron|gI-dihedral=?| |gI-special=Deltahedron|gI-schl={3,5/2}|gI-schl2=| |gI-CD=

|gD-name=Great dodecahedron| |gD-image=Great dodecahedron.png|gD-image3=GreatDodecahedron.gif|gD-dimage=Small stellated dodecahedron.png| |gD-vfigimage=Great dodecahedron_vertfig.png|gD-vfig=(55)/2| |gD-Wythoff=5/2 | 2 5| |gD-W=21|gD-U=35|gD-K=40|gD-C=44| |gD-V=12|gD-E=30|gD-F=12|gD-Fdetail=12{5}| |gD-chi=-6|gD-group=Ih| |gD-B=Gad|gD-dual=Small stellated dodecahedron|gD-dihedral=?| |gD-special=|gD-schl={5,5/2}|gD-schl2=| |gD-CD=

|lsD-name=Small stellated dodecahedron| |lsD-image=Small stellated dodecahedron.png|lsD-image3=SmallStellatedDodecahedron.gif|lsD-dimage=Great dodecahedron.png| |lsD-vfigimage=Small stellated dodecahedron_vertfig.png|lsD-vfig=(5/2)5| |lsD-Wythoff=5 | 25/2| |lsD-W=20|lsD-U=34|lsD-K=39|lsD-C=43| |lsD-V=12|lsD-E=30|lsD-F=12|lsD-Fdetail=12{5/2}| |lsD-chi=-6|lsD-group=Ih| |lsD-B=Sissid|lsD-dual=Great dodecahedron|lsD-dihedral=?| |lsD-special=|lsD-schl={5/2,5}|lsD-schl2=| |lsD-CD=

|gsD-name=Great stellated dodecahedron| |gsD-image=Great stellated dodecahedron.png|gsD-image3=GreatStellatedDodecahedron.gif|gsD-dimage=Great icosahedron.png| |gsD-vfigimage=Great stellated dodecahedron_vertfig.png|gsD-vfig=(5/2)3| |gsD-Wythoff=3 | 25/2| |gsD-W=22|gsD-U=52|gsD-K=57|gsD-C=68| |gsD-V=20|gsD-E=30|gsD-F=12|gsD-Fdetail=12{5/2}| |gsD-chi=2|gsD-group=Ih| |gsD-B=Gissid|gsD-dual=Great icosahedron|gsD-dihedral=?| |gsD-special=|gsD-schl={5/2,3}|gsD-schl2=| |gsD-CD=

}}