Pergi ke kandungan

Kumpulan homotopi

Daripada Wikipedia, ensiklopedia bebas.

Dalam matematik, kumpulan homotopi digunakan dalam topologi algebra untuk mengelaskan ruang topologi. Kumpulan homotopi yang pertama dan teringkas ialah kumpulan asasi, yang merakamkan maklumat tentang gelung dalam suatu ruang. Intuitively, kumpulan homotopi merakamkan maklumat tentang bentuk asas, atau lohong, suatu ruang topologi.

Lihat juga

[sunting | sunting sumber]
  • Ronald Brown, `Groupoids and crossed objects in algebraic topology', Homology, Homotopy and Applications, 1 (1999) 1–78.
  • Ronald Brown, Philip J. Higgins, Rafael Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathematics Vol. 15, 703 pages, European Math. Society, Zürich, 2011. doi:10.4171/083 Templat:MR
  • Čech, Eduard (1932), "Höherdimensionale Homotopiegruppen", Verhandlungen des Internationalen Mathematikerkongress, Zürich.
  • Hatcher, Allen (2002), Algebraic topology, Cambridge University Press, ISBN 978-0-521-79540-1
  • Hazewinkel, Michiel, penyunting (2001), "Homotopy group", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
  • Hopf, Heinz (1931), "Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche", Mathematische Annalen, 104 (1): 637–665, doi:10.1007/BF01457962.
  • Kamps, Klaus H.; Porter, Timothy (1997). Abstract homotopy and simple homotopy theory. River Edge, NJ: World Scientific Publishing. doi:10.1142/9789812831989. ISBN 981-02-1602-5. MR 1464944.
  • Toda, Hiroshi (1962). Composition methods in homotopy groups of spheres. Annals of Mathematics Studies. 49. Princeton, N.J.: Princeton University Press. ISBN 0-691-09586-8. MR 0143217.
  • Whitehead, George William (1978). Elements of homotopy theory. Graduate Texts in Mathematics. 61 (ed. 3rd). New York-Berlin: Springer-Verlag. m/s. xxi+744. ISBN 978-0-387-90336-1. MR 0516508.

Templat:Topologi