Pengguna:Limbo.J/Kotak pasir

Daripada Wikipedia, ensiklopedia bebas.

Pengangkutan[sunting | sunting sumber]

Trem Alstom Citadis (kiri) dan Eurotram (kanan) di Strasbourg yang berada di atas trek berumput

Pembebasan pengangkutan merupakan 15% daripada pembebasan karbon di seluruh dunia.[1] Peningkatan penggunaan pengangkutan awam, pengangkutan barangan yang rendah karbon dan berbasikal merupakan komponen penting dalam penyahkarbonan pengangkutan.[2][3]

Kenderaan elektrik dan kereta api mesra alam membantu mengurangkan penggunaan bahan api fosil. Dalam kebanyakan kes, kereta api elektrik adalah lebih cekap berbanding dengan pengangkutan udara dan trak.[4] Kaedah lain untuk meningkatkan kecekapan pengangkutan termasuklah menambah baik sistem pengangkutan awam, mobiliti pintar, perkongsian kereta dan kenderaan hibrid. Kereta berkuasa bahan api fosil boleh ditukar kepada kererta berkuasa elektrik. Penghasilan bahan api alternatifyang tidak membebaskan GHG pula akan menyebabkan kehilangan penukaran (bahasa Inggeris: conversion losses) yang tinggi. Tambahan pula, peralihan daripada sistem pengangkutan yang didominasi oleh kereta kepada sistem pengangkutan awam yang rendah karbon adalah penting.[5]

Kenderaan elektrik[sunting | sunting sumber]

Bus elektrik di Montreal

Antara satu hingga tiga suku kereta di atas jalan raya pada 2050 dijangka terdiri daripada kenderaan elektrik (EV). EV menggunakan 38 megajoule per 100 km berbanding dengan 142 megajoule per 100 km bagi kereta enjin pembakaran dalam.[6] Bahan api hidrogen boleh menyelesaikan masalah keberatan bateri bagi pengangkutan jauh oleh trak dan kapal.[7][8]

Pembebasan gas rumah hijau bergantung kepada jumlah tenaga hijau yang digunakan dalam bateri atau penghasilan dan pengecasan sel bahan api. Dalam satu sistem yang kebanyakannya berasaskan tenaga elektrik, pembebasan kenderaan elektrik berkemungkinan untuk melebihi pembakaran diesel.[9]

Satu tinjauan Eropah mendapati bahawa setakat 2022, 39% orang Eropah lebih cenderung untuk membeli kenderaan hibrid, manakala 33% akan membeli kenderaan petrol atau diesel. Jenis kenderaan yang paling kurang digemari oleh orang Eropah ialah kenderaan elektrik, dengan hanya 28% responden mengatakan bahawa mereka akan membelinya. [10] Selain itu, 44% pembeli kereta China akan membeli sebuah kereta elektrik, manakala 38% orang Amerika akan membeli kereta hibrid, 33% akan membeli kereta petrol atau diesel, dan hanya 29% akan membeli kereta elektrik. [10]

Perkapalan[sunting | sunting sumber]

Dalam industri perkapalan, pengawalan pembebasan telah mendorong pengendali kapal untuk bertukar daripada bahan api bunker atau minyak bahan api berat kepada bahan api berasaskan minyak yang lebih mahal, melaksanakan teknologi pemprosesan gas serombong yang berharga tinggi atau menggunakan enjin gas asli cecair (LNG).[11] Namun, masalah kebocoran metana, satu keadaan apabila gas yang belum dibakar itu bocor daripada enjinnya, merupakan salah satu keburukan penggunaan LNG. Maersk, syarikat perkapalan kontea dan pengendali kapal terbesar di dunia, telah mengingatkan bahawa keputusan untuk melabur dalam bahan api peralihan seperti LNG telah mewujudkan risiko aset terbiar (bahasa Inggeris: stranded asset).[12] Syarikat tersebut menjadikan ammonia hijau sebagai pilihan bahan api mereka pada masa depan dan telah mengumumkan bahawa kapal neutral karbon yang pertama di dunia akan mula beroperasi pada 2023. Kapal tersebut akan menggunakan metanol yang neutral karbon sebagai bahan api.[13]

Selain LNG, terdapat juga cadangan untuk menggunakan bahan api bio sebagai bahan api alternatif. Namun, bidang perkapalan memerlukan isi padu bahan api bio yang sangat besar dan penghasilan bahan api bio masih terhad. Satu kapal kontena yang sangat besar akan menggunakan semua bahan api bio yang dihasilkan dalam setahun oleh satu kilang bahan api bio bersaiz sederhana.[14] Wallenius Marine, sebuah syarikat penghasilan kapal Sweden, juga sedang meneroka kemungkinan untuk berbalik kepada kapal berkuasa angin, namun dengan menggunakan teknologi yang lebih canggih untuk meningkatkan laju kapal.[15] Walaupun kapal elektrik tidak sesuai untuk pengangkutan barang, teknologi tersebut boleh digunakan untuk feri jarak pendek. Norway telah menyasar untuk mengelektrifikasi kesemua kapal ferinya pada 2025.[16]

Pengangkutan udara[sunting | sunting sumber]

Dalam bidang penerbangan, pembebasan CO2 mutakhir yang sebanyak 180 Mt (11% daripada pembebasan bidang pengangkutan) dijangka akan meningkat dalam kebanyak unjuran, sekurang-kurangnya hingga 2040. Bahan api bio dan hidrogen hanya dapat menjana tenaga untuk sebilangan kecil kapal terbang sahaja dalam beberapa tahun yang akan datang. Kapal terbang hibrid untuk penerbangan serantau dijangka akan mula beroperasi selepas 2030, dan selepas 2035 bagi kapal terbang berkuasa bateri.[17]

Pada Oktober 2016, 191 anggota negara dalam ICAO telah menubuhkan Skim Pengurangan dan Mengimbangi Karbon bagi Penerbangan Antarabangsa (bahasa Inggeris: Carbon Offsetting and Reduction Scheme for International Aviation, CORSIA). Skim tersebut mewajibkan pengendali kapal terbang untuk membeli imbangan karbon untuk mengimbangkan pembebasan mereka yang lebih tinggi daripada tahap 2020, bermula dengan 2021.[18] Skim ini adalah secara sukarela sehingga 2027.[19]

Selain pembebasan gas rumah hijau daripada kapal terbang, jejak wap juga mempunyai impak terhadap perubahan iklim.[20][21]

Energy[sunting | sunting sumber]

Energy consumption will need to be halved by 2050 for avoiding warming of 1.5 degrees above preindustrial levels. While this will slow economic growth it will not necessarily lead to a lower life level if it will be done in the right way.[22]

Pemanasan dan penyejukan[sunting | sunting sumber]

Pemanasan[sunting | sunting sumber]

Sektor bangunan merangkumi 23% daripada pembebasan CO2 global yang berkaitan dengan tenaga.[23] Sebanyak separuh tenaga tersebut digunakan untuk pemanasan ruang dan air.[24] Dengan menggabungkan pam haba dan teknik penebatan bangunan, permintaan tenaga primer boleh dikurangkan. Secara umumnya, proses elektrifikasi pemanasan dan penyejukan hanya dapat mengurangkan pembebasan GHG jika tenaga elektrik tersebut berasal daripada sumber rendah karbon. Sebuah stesen janakuasa bahan api fosil hany dapat membekalkan 3 unit tenaga elektrik bagi setiap 10 unit tenaga bahan api yang dibebaskan.

Unit luar bagi sebuah pam haba sumber udara

Satu pam haba yang moden lazimnya menjana kira-kira dua hingga enam kali ganda lebih tenaga haba berbanding dengan tenaga elektrik yang digunakan. Hal ini menyebabkan keberkesanannya berada antara 200 hingga 600%, bergantung kepada koefisen prestasinya dan suhu luar. Pam haba menggunakan sebuah pemampat elektrik untuk mengoperasikan kitaran penyejukan yang mengeluarkan tenaga haba dari udara luar dan membawa haba tersebut ke dalam ruang yang perlu dipanaskan. Semasa musim panas, kitaran ini boleh diterbalikkan dan pam haba tersebut boleh digunakan sebagai penghawa dingin. Di kawasan yang mempunyai suhu musim sejuk purata yang kurang daripada 0°C, pam haba sumber tanah (yang menggunakan tenaga geoterma) adalah lebih efisen berbanding dengan pam haba sumber udara. Harga pam haba yang lebih tinggi berbanding dengan pemanas rintangan boleh diimbangkan sekiranya pengguna tersebut juga memerlukan penghawa dingin semasa musim panas.

Dengan bahagian pasaran sebanyak 30%, pam haba yang beroperasi dengan tenaga boleh diperbaharui boleh mengurangkan pembebasan CO2 global sebanyak 8% pada setiap tahun.[25] Penggunaan pam haba sumber tanah boleh mengurangkan sebanyak 60% daripada permintaan tenaga primer dan 90% daripada CO2 yang dibebaskan oleh dandang gas asli di Eropah pada 2050 dan secara tidak langsungnya, meningkatkan bahagian pasaran bagi tenaga boleh diperbaharui.[26] Penggunaan tenaga boleh diperbaharui yang berlebihan dalam pam haba telah dianggap sebagai langkah paling efektif yang boleh dilakukan oleh orang umum dalam mengurangkan pemanasan global dan pengurangan bahan api fosil.[27]

Penyejukan[sunting | sunting sumber]

Penyejukan dan sistem penghawa dingin merangkumi 10% daripada pembebasan CO2 global kerana menggunakan tenaga elektrik yang dijanakan oleh bahan api fosil serta penggunaan gas terfluorin (bahasa Inggeris: fluorinated gas). Mengurangkan penggunaan HFC sebanyak 80% pada tengah abad boleh mengelakkan peningkatan suhu lebih daripada 0.4 °C pada akhir abad ke-21. Sebanyak 90% daripada pembebasan yang berasal daripada penyejukan dibebaskan pada akhir hayat peralatan tersebut. Antara solusi termasuknya melabur dalam pembuangan yang betul serta penyejuk yang kurang membebaskan gas rumah hijau.[28]

Penggunaan tenaga oleh penyejukan dijangka akan meningkat secara nyata disebabkan oleh suhu yang lebih tinggi serta produk penyejukan telah menjadi lebih murah dan mampu dibeli oleh penduduk negara yang lebih miskin. Antara 2.8 bilion orang yang meninggal di kawasan yang terpanas di dunia, hanya 8% kini mempunyai penyaman udara, berbanding dengan 90% penduduk di AS dan Jepun.[29] Dengan menggabungkan penambahbaikan kecekapan tenaga dengan peralihan daripada penyejuk yang lebih mencemarkan udara, manusia boleh mengelakkan pembebasan gas rumah hijau kumulatif sebanyak 210-460 GtCO2e dalam empad dekad yang akan datang.[30] Peralihan kepada tenaga boleh diperbaharui dalam sektor penyejukan boleh membawa dua kebaikan: Penjanaan tenaga suria dengan puncak penggunaan tenaga pada tengah hari adalah sama dengan beban yang diperlukan untuk penyejukan. Tambahan pula, penyejukan juga mempunyai potensi yang besar untuk pengurusan beban dalam grid elektrik.

Pemanasan rintangan elektrik[sunting | sunting sumber]

Pemanas sinaran untuk kegunaan rumah tangga adalah murah dan digunakan secara meluas tetapi kurang cekap berbanding dengan pam haba. Di kawasan seperti Norway, Brazil, dan Quebec yang kaya dengan hidroelektrik, haba elektrik dan air panas adalah biasa. Tangki air panas berskala besar boleh digunakan untuk pengurusan sisi permintaan dan menyimpankan pelbagai tenaga boleh diperbaharui selama beberapa jam atau hari.

Agriculture[sunting | sunting sumber]

Managed grazing methods are argued to be able to restore grasslands, thereby significantly decreasing atmospheric CO2 levels.[31][sumber lebih baik diperlukan]

As 25% of greenhouse gas emissions (GHGs) are coming from agriculture and land use, it is impossible to limit temperature rise to 1.5 degrees without addressing the emissions from agriculture. During 2021 United Nations Climate Change Conference, 45 countries pledged to give more than 4 billion dollars for transition to sustainable agriculture. The organization "Slow Food" expressed concern about the effectivity of the spendings, as they concentrate on technological solutions and reforestation en place of "a holistic agroecology that transforms food from a mass-produced commodity into part of a sustainable system that works within natural boundaries."[32]

With 21% of the global methane emissions, cattle are a major driver on global warming.[33] When rainforests are cut and the land is converted for grazing, the impact is even higher. This results in up to 335 kg CO2eq emissions for the production of 1 kg beef in Brazil when using a 30-year time horizon.[34] Other livestock, manure management and rice cultivation also produce relevant GHG emissions, in addition to fossil fuel combustion in agriculture.

Agricultural changes may require complementary laws and policies to drive and support dietary shifts, including changes in pet food,[35] increases in organic food products,[36][37][38] and substantial reductions of meat-intake (food miles usually do not play a large role).[39][40][41]

Regenerative agriculture includes conservation tillage, diversity, rotation and cover crops, minimizing physical disturbance, minimizing the usage of chemicals.[42] It has other benefits like improving the state of the soil and consequently yields.[43] A research made by the Rodale institute suggests that a worldwide transition to regenerative agriculture can soak around 100% of the greenhouse gas emissions currently emitted by people.[44] Restoring grasslands stores CO2 with estimates that increasing the carbon content of the soils in the world's 3.5 billion hectares of agricultural grassland by 1% would offset nearly 12 years of CO2 emissions.[45] Allan Savory, as part of holistic management, claims that while large herds are often blamed for desertification, prehistoric lands supported large or larger herds and areas where herds were removed in the United States are still desertifying.[31] Grazers, such as livestock that are not left to wander, would eat the grass and would minimize any grass growth.[45][46][47] However, carbon sequestration is maximized when only part of the leaf matter is consumed by a moving herd as a corresponding amount of root matter is sloughed off too sequestering part of its carbon into the soil.[45]

In the United States, soils account for about half of agricultural GHGs while agriculture, forestry and other land use emits 24%.[48] The US EPA says soil management practices that can reduce the emissions of nitrous oxide (N2O) from soils include fertilizer usage, irrigation, and tillage.

Important mitigation options for reducing the greenhouse gas emissions from livestock include genetic selection,[49][50] introduction of methanotrophic bacteria into the rumen,[51][52] vaccines, feeds,[53] toilet-training,[54] diet modification and grazing management.[55][56][57] Other options include just using ruminant-free alternatives instead, such as milk substitutes and meat analogues. Non-ruminant livestock (e.g. poultry) generates far fewer emissions.[58]

A matrix of the progress in the adoption of management practices and approaches

Methods that enhance carbon sequestration in soil include no-till farming, residue mulching and crop rotation, all of which are more widely used in organic farming than in conventional farming.[59][60] Because only 5% of US farmland currently uses no-till and residue mulching, there is a large potential for carbon sequestration.[61][62]

Farming can deplete soil carbon and render soil incapable of supporting life. However, conservation farming can protect carbon in soils, and repair damage over time.[63] The farming practice of cover crops has been recognized as climate-smart agriculture.[64] Best management practices for European soils were described to increase soil organic carbon: conversion of arable land to grassland, straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops.[65]

Farming within forest growth is sometimes called agroforestry or farmer-managed natural regeneration. In Burkina Faso and Mali, local farmers such as Yacouba Sawadogo innovated with methods such as Zaï that have improved the quality of the soil and thus helping prevent carbon emitting desertification.[66]

Methane emissions in rice cultivation can be cut by implementing an improved water management, combining dry seeding and one drawdown, or a perfect execution of a sequence of wetting and drying. This results in emission reductions of up to 90% compared to full flooding and even increased yields.[67]

Urban planning[sunting | sunting sumber]

Bicycles have almost no carbon footprint compared to cars, and canal transport may represent a positive option for certain types of freight in the 21st century.[68]

Effective urban planning to reduce sprawl aims to decrease the distance travelled by vehicles, lowering emissions from transportation. Personal cars are extremely inefficient at moving passengers, while public transport and bicycles are many times more efficient (as is the simplest form of human transportation, walking). All of these are encouraged by urban/community planning and are an effective way to reduce greenhouse gas emissions. Inefficient land use development practices have increased infrastructure costs as well as the amount of energy needed for transportation, community services, and buildings. Switching from cars by improving walkability and cycling infrastructure is either free or beneficial to a country's economy as a whole.[69]

"Urban mitigation options can be categorized into three broad strategies: (1) reducing urban energy 3 consumption across all sectors, including through spatial planning and infrastructure; (2) electrification 4 and switching to net zero emissions resources; and (3) enhancing carbon stocks and uptake through 5 urban green and blue infrastructure, which can also offer multiple co-benefits."[70]

Cities have big potential for reducing greenhouse gas emissions. They emitted 28 GtCO2-eq in the year 2020. Without any action cities supposed to emit 65 GtCO2-eq by the year 2050. With full scale mitigation action the emissions will be near zero, in the worst case they will be only 3 GtCO2-eq. City planning, supporting mixed use of space, transit, walking, cycling, sharing vehicles can reduce urban emissions by 23% - 26%. Urban forests, lakes and other blue and green infrastructure can reduce emissions directly and indirectly (trough reduce in energy demand for cooling for example).[71]

At the same time, a growing number of citizens and government officials have begun advocating a smarter approach to land use planning. These smart growth practices include compact community development, multiple transportation choices, mixed land uses, and practices to conserve green space. These programs offer environmental, economic, and quality-of-life benefits; and they also serve to reduce energy usage and greenhouse gas emissions.

Reducing the number of cars on the road,[72] for example through proof-of-parking requirements, corporate car sharing, road reallocation (from only car use to cycling road, ...), circulation plans, bans on on-street parking or by increasing the costs of car ownership can help in reducing traffic congestion in cities.

Approaches such as New Urbanism and transit-oriented development seek to reduce distances travelled, especially by private vehicles, encourage public transit and make walking and cycling more attractive options. This is achieved through "medium-density", mixed-use planning and the concentration of housing within walking distance of town centers and transport nodes.

Smarter growth land use policies have both a direct and indirect effect on energy consuming behavior. For example, transportation energy usage, the number one user of petroleum fuels, could be significantly reduced through more compact and mixed use land development patterns (urban agriculture, urban trees), which in turn could be served by a greater variety of non-automotive based transportation choices.

Changes in urban form, behavior programs, the circular economy, the shared economy, and digitalization trends can support systemic changes that lead to reductions in demand for transport services or expands the use of more efficient transport modes. Cities can reduce their transport-related fuel consumption by around 25% through combinations of more compact land use and the provision of less car-dependent transport infrastructure. Appropriate infrastructure, including protected pedestrian and bike pathways, can also support much greater localized active travel. Transport demand management incentives are expected to be necessary to support these systemic changes. There is mixed evidence of the effect of circular economy initiatives, shared economy initiatives, and digitalization on demand for transport services. For example, while dematerialization can reduce the amount of material that need to be transported to manufacturing facilities, an increase in online shopping with priority delivery can increase demand for freight transport. Similarly, while teleworking could reduce travel demand, increased ridesharing could increase vehicle-km travelled.[73]

Building design[sunting | sunting sumber]

Emissions from housing are substantial,[74] and government-supported energy efficiency programmes can make a difference.[75]

According to the IPCC Sixth Assessment Report buildings emitted 21% of global GHG emissions in the year 2019. 80% - 90% of their emissions can be cut while helping to achieve other Sustainable Development Goals. The report introduces a new scheme for reducing GHG emissions in buildings: SER = Sufficiency, Efficiency, Renewable. Sufficiency measures do not need very complex technology, energy supply, maintenance or replacement during the life of the building. Those include, natural ventilation, green roofs, white walls, mixed use of spaces, collective use of devices etc. [76] There are multiple links between emissions from buildings and emissions from other sectors including those discussed in chapters 6, 7, 8, 10 and 11 in the report. Reducing GHG emissions from buildings is linked to Sharing economy and Circular economy.[77]

With strong action to reduce energy consumption of buildings "average energy intensity of the global building stock would decrease by more than 80% by 2050."[78]

New buildings can be constructed using passive solar building design, low-energy building, or zero-energy building techniques, using renewable heat sources. Existing buildings can be made more efficient through the use of insulation, high-efficiency appliances (particularly hot water heaters and furnaces), double- or triple-glazed gas-filled windows, external window shades, and building orientation and siting. Renewable heat sources such as shallow geothermal and passive solar energy reduce the amount of greenhouse gasses emitted. In addition to designing buildings which are more energy-efficient to heat, it is possible to design buildings that are more energy-efficient to cool by using lighter-coloured, more reflective materials in the development of urban areas (e.g. by painting roofs white) and planting trees.[79][80] This saves energy because it cools buildings and reduces the urban heat island effect thus reducing the use of air conditioning.

Forest conservation and reforestation[sunting | sunting sumber]

The Trillion Tree Campaign is a project which aims to plant one trillion trees worldwide among other for fighting climate change.[81]

The campaign has the next principles:

  • Conserving and regrowing forest can work only in compound with reducing fossil fuel emissions.
  • Conserving existing ecosystems
  • Restoration must be socially and ecologically responsible[82]

One study suggested that reforestation and forest conservation can soak two third of the greenhouse gases emitted to the atmosphere by people, even though after they reduced it to one third. According to another study the impact of trees, even except CO2 can reduce global temperature by 0.5°C. Many were worried that the emphasis on tree planting will distract people from cutting emission and restoring natural forests.[83]

  1. ^ Ge, Mengpin; Friedrich, Johannes; Vigna, Leandro (6 February 2020). "4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors". World Resources Institute (dalam bahasa Inggeris). Dicapai pada 30 Disember 2020.
  2. ^ Jochem, Patrick; Rothengatter, Werner; Schade, Wolfgang (2016). "Climate change and transport" (dalam bahasa Inggeris).
  3. ^ Kwan, Soo Chen; Hashim, Jamal Hisham (1 April 2016). "A review on co-benefits of mass public transportation in climate change mitigation". Sustainable Cities and Society (dalam bahasa Inggeris). 22: 11–18. doi:10.1016/j.scs.2016.01.004. ISSN 2210-6707.
  4. ^ Lowe, Marcia D. (April 1994). "Back on Track: The Global Rail Revival". Diarkibkan daripada yang asal pada 4 Disember 2006. Dicapai pada 15 Februari 2007.
  5. ^ Mattioli, Giulio; Roberts, Cameron; Steinberger, Julia K.; Brown, Andrew (1 August 2020). "The political economy of car dependence: A systems of provision approach". Energy Research & Social Science (dalam bahasa Inggeris). 66: 101486. doi:10.1016/j.erss.2020.101486. ISSN 2214-6296. S2CID 216186279.
  6. ^ "How green are electric cars?". The Guardian.
  7. ^ "Want Electric Ships? Build a Better Battery". Wired (dalam bahasa Inggeris). ISSN 1059-1028. Dicapai pada 7 April 2020.
  8. ^ "The scale of investment needed to decarbonize international shipping". www.globalmaritimeforum.org. Dicapai pada 7 April 2020.
  9. ^ Sternberg, André; Hank, Christoph; Ebling, Christopher (13 Julai 2019). "Greenhouse gas emissions for battery electric and fuel cell electric vehicles with ranges over 300 kilometers" (PDF). Fraunhofer Institute for Solar Energy Systems ISE: 8. Cite journal requires |journal= (bantuan)
  10. ^ a b "2021-2022 EIB Climate Survey, part 2 of 3: Shopping for a new car? Most Europeans say they will opt for hybrid or electric". EIB.org (dalam bahasa Inggeris). Dicapai pada 4 April 2022.
  11. ^ "LNG projected to gain significant market share in transport fuels by 2035". Gas Processing News/Bloomberg. 28 September 2014.
  12. ^ Chambers, Sam (26 February 2021). "'Transitional fuels are capturing the regulatory agenda and incentives': Maersk". splash247. Dicapai pada 27 February 2021.
  13. ^ "Maersk backs plan to build Europe's largest green ammonia facility" (Siaran akhbar). Maersk. 23 February 2021. Dicapai pada 27 February 2021.
  14. ^ Hsieh, Chia-wen Carmen; Felby, Claus (2017). "Biofuels for the marine shipping sector" (PDF). IEA Bioenergy. Dicapai pada 20 Mei 2022.
  15. ^ Hahn, Jennifer (22 Oktober 2020). "Wallenius Marine develops world's largest wind-powered vessel to slash shipping emissions". Dezeen. Dicapai pada 20 Mei 2022.
  16. ^ Parker, Selwyn (8 September 2020). "Norway moves closer to its ambition of an all-electric ferry fleet". Rivera.
  17. ^ "The aviation network – Decarbonisation issues". Eurocontrol. 4 September 2019.
  18. ^ Michael Gill (IATA) (Mei 2017). "Preparing for CORSIA Take-Off" (PDF). Greenhouse gas market report. Persatuan Pengangkutan Udara Antarabangsa.
  19. ^ Milman, Oliver (6 Oktober 2016). "First deal to curb aviation emissions agreed in landmark UN accord". The Guardian. London.
  20. ^ "How Airplane Contrails Are Helping Make the Planet Warmer". Yale E360.
  21. ^ Lührs, Benjamin; Linke, Florian; Matthes, Sigrun; Grewe, Volker; Yin, Feijia (February 2021). "Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation". Aerospace (dalam bahasa Inggeris). 8 (2): 50. doi:10.3390/aerospace8020050.
  22. ^ KNIGHT, BEN (28 April 2022). "We must halve our energy use to avoid climate catastrophe: new modelling". UNSW Sydney. Dicapai pada 6 May 2022.
  23. ^ IPCC SR15 Ch2 2018, halaman 141
  24. ^ IEA ETP Buildings 2017
  25. ^ Iain, Staffell; dll. (2012). "A review of domestic heat pumps". Energy and Environmental Science. 5 (11): 9291–9306. doi:10.1039/c2ee22653g.
  26. ^ Carvalho; dll. (2015). "Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal". Renewable and Sustainable Energy Reviews. 45: 755–768. doi:10.1016/j.rser.2015.02.034.
  27. ^ Sternberg André, Bardow André (2015). "Power-to-What? – Environmental assessment of energy storage systems". Energy and Environmental Science. 8 (2): 389–400. doi:10.1039/c4ee03051f.
  28. ^ "How your fridge is heating up the planet". BBCnews.com. 7 December 2020. Dicapai pada 16 July 2021.
  29. ^ Radhika, Lalik (2019). "How India is solving its cooling challenge". World Economic Forum. Dicapai pada 20 July 2021.
  30. ^ "Cooling Emissions and Policy Synthesis Report". IEA/UNEP. 2020. Dicapai pada 20 July 2020.
  31. ^ a b "How cows could repair the world". nationalgeographic.com. 6 March 2013. Dicapai pada 5 May 2013.
  32. ^ Rosane, Olivia (8 November 2021). "45 Countries Pledge Over $4 Billion to Support Sustainable Agriculture, But Is It Enough?". Ecowatch. Dicapai pada 11 November 2021.
  33. ^ Ralat petik: Tag <ref> tidak sah; teks bagi rujukan Trends6 tidak disediakan
  34. ^ Schmidinger, Kurt; Stehfest, Elke (2012). "Including CO2 implications of land occupation in LCAs – method and example for livestock products" (PDF). Int J Life Cycle Assess. 17 (8): 967. doi:10.1007/s11367-012-0434-7. S2CID 73625760.
  35. ^ Acuff, Heather L.; Dainton, Amanda N.; Dhakal, Janak; Kiprotich, Samuel; Aldrich, Greg (1 May 2021). "Sustainability and Pet Food: Is There a Role for Veterinarians?". Veterinary Clinics: Small Animal Practice (dalam bahasa English). 51 (3): 563–581. doi:10.1016/j.cvsm.2021.01.010. ISSN 0195-5616. PMID 33773646. S2CID 232406972.CS1 maint: unrecognized language (link)
  36. ^ Pieper, Maximilian; Michalke, Amelie; Gaugler, Tobias (15 December 2020). "Calculation of external climate costs for food highlights inadequate pricing of animal products". Nature Communications. 11 (1): 6117. Bibcode:2020NatCo..11.6117P. doi:10.1038/s41467-020-19474-6. ISSN 2041-1723. PMC 7738510. PMID 33323933.
  37. ^ Sazvar, Zeinab; Rahmani, Mina; Govindan, Kannan (1 September 2018). "A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health". Journal of Cleaner Production (dalam bahasa Inggeris). 194: 564–583. doi:10.1016/j.jclepro.2018.04.118. ISSN 0959-6526. S2CID 158865547.
  38. ^ Ivanova, Diana; Barrett, John; Wiedenhofer, Dominik; MacUra, Biljana; Callaghan, Max; Creutzig, Felix (2020). "Quantifying the potential for climate change mitigation of consumption options". Environmental Research Letters (dalam bahasa Inggeris). 15 (9): 093001. Bibcode:2020ERL....15i3001I. doi:10.1088/1748-9326/ab8589. S2CID 216425742.
  39. ^ Kim, Brent F.; Santo, Raychel E.; Scatterday, Allysan P.; Fry, Jillian P.; Synk, Colleen M.; Cebron, Shannon R.; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; de Pee, Saskia; Bloem, Martin W.; Neff, Roni A.; Nachman, Keeve E. (1 May 2020). "Country-specific dietary shifts to mitigate climate and water crises". Global Environmental Change (dalam bahasa Inggeris). 62: 101926. doi:10.1016/j.gloenvcha.2019.05.010. ISSN 0959-3780. S2CID 198623398.
  40. ^ Ritchie, Hannah; Reay, David S.; Higgins, Peter (1 March 2018). "The impact of global dietary guidelines on climate change". Global Environmental Change (dalam bahasa Inggeris). 49: 46–55. doi:10.1016/j.gloenvcha.2018.02.005. hdl:1842/33270. ISSN 0959-3780.
  41. ^ Rippin, Holly L.; Cade, Janet E.; Berrang-Ford, Lea; Benton, Tim G.; Hancock, Neil; Greenwood, Darren C. (23 November 2021). "Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom". PLOS ONE (dalam bahasa Inggeris). 16 (11): e0259418. Bibcode:2021PLoSO..1659418R. doi:10.1371/journal.pone.0259418. ISSN 1932-6203. PMC 8610494 Check |pmc= value (bantuan). PMID 34813623 Check |pmid= value (bantuan).
  42. ^ Scanlon, Kerry (18 October 2018). "Trends in Sustainability: Regenerative Agriculture". Rainforest Alliance. Dicapai pada 29 October 2019.
  43. ^ "What Is Regenerative Agriculture?". Ecowatch. The Climate Reality Project. 2 July 2019. Dicapai pada 3 July 2019.
  44. ^ Regenerative Organic Agriculture and Climate Change (PDF). Rodale institute. m/s. 2–9. Dicapai pada 1 April 2022.
  45. ^ a b c "How fences could save the planet". newstatesman.com. 13 January 2011. Dicapai pada 5 May 2013.
  46. ^ "Restoring soil carbon can reverse global warming, desertification and biodiversity". mongabay.com. 21 February 2008. Diarkibkan daripada yang asal pada 25 June 2013. Dicapai pada 5 May 2013.
  47. ^ "How eating grass-fed beef could help fight climate change". Time. 25 January 2010. Diarkibkan daripada yang asal pada 17 January 2010. Dicapai pada 11 May 2013.
  48. ^ "Agriculture: Sources of Greenhouse Gas Emissions by Sector". EPA. 2019.
  49. ^ "Bovine Genomics | Genome Canada". www.genomecanada.ca.
  50. ^ Airhart, Ellen. "Canada Is Using Genetics to Make Cows Less Gassy". Wired – melalui www.wired.com.
  51. ^ "The use of direct-fed microbials for mitigation of ruminant methane emissions: a review".
  52. ^ Parmar, N.R.; Nirmal Kumar, J.I.; Joshi, C.G. (2015). "Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach". Frontiers in Life Science. 8 (4): 371–378. doi:10.1080/21553769.2015.1063550. S2CID 89217740.
  53. ^ "Kowbucha, seaweed, vaccines: the race to reduce cows' methane emissions". The Guardian (dalam bahasa Inggeris). 30 September 2021. Dicapai pada 1 December 2021.
  54. ^ Dirksen, Neele; Langbein, Jan; Schrader, Lars; Puppe, Birger; Elliffe, Douglas; Siebert, Katrin; Röttgen, Volker; Matthews, Lindsay (13 September 2021). "Learned control of urinary reflexes in cattle to help reduce greenhouse gas emissions". Current Biology (dalam bahasa English). 31 (17): R1033–R1034. doi:10.1016/j.cub.2021.07.011. ISSN 0960-9822. PMID 34520709 Check |pmid= value (bantuan). S2CID 237497867 Check |s2cid= value (bantuan).CS1 maint: unrecognized language (link)
  55. ^ Boadi, D (2004). "Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review". Can. J. Anim. Sci. 84 (3): 319–335. doi:10.4141/a03-109.
  56. ^ Martin, C. et al. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4 : pp 351-365.
  57. ^ Eckard, R. J.; dll. (2010). "Options for the abatement of methane and nitrous oxide from ruminant production: A review". Livestock Science. 130 (1–3): 47–56. doi:10.1016/j.livsci.2010.02.010.
  58. ^ "Livestock Production Science | Livestock Farming Systems and their Environmental Impacts | ScienceDirect.com by Elsevier". www.sciencedirect.com.
  59. ^ Lang, Susan S. (13 July 2005). "Organic farming produces same corn and soybean yields as conventional farms, but consumes less energy and no pesticides, study finds". Dicapai pada 8 July 2008.
  60. ^ Pimentel, David; Hepperly, Paul; Hanson, James; Douds, David; Seidel, Rita (2005). "Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems". BioScience. 55 (7): 573–82. doi:10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2.
  61. ^ Lal, Rattan; Griffin, Michael; Apt, Jay; Lave, Lester; Morgan, M. Granger (2004). "Ecology: Managing Soil Carbon". Science. 304 (5669): 393. doi:10.1126/science.1093079. PMID 15087532. S2CID 129925989.
  62. ^ Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; Minasny, B. (27 October 2020). "Towards a global-scale soil climate mitigation strategy". Nature Communications (dalam bahasa Inggeris). 11 (1): 5427. Bibcode:2020NatCo..11.5427A. doi:10.1038/s41467-020-18887-7. ISSN 2041-1723. PMC 7591914. PMID 33110065.
  63. ^ Papanicolaou, A. N. (Thanos); Wacha, Kenneth M.; Abban, Benjamin K.; Wilson, Christopher G.; Hatfield, Jerry L.; Stanier, Charles O.; Filley, Timothy R. (2015). "Conservation Farming Shown to Protect Carbon in Soil". Journal of Geophysical Research: Biogeosciences. 120 (11): 2375–2401. Bibcode:2015JGRG..120.2375P. doi:10.1002/2015JG003078.
  64. ^ "Cover Crops, a Farming Revolution With Deep Roots in the Past". The New York Times. 2016.
  65. ^ Lugato, Emanuele; Bampa, Francesca; Panagos, Panos; Montanarella, Luca; Jones, Arwyn (1 November 2014). "Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices". Global Change Biology. 20 (11): 3557–3567. Bibcode:2014GCBio..20.3557L. doi:10.1111/gcb.12551. ISSN 1365-2486. PMID 24789378.
  66. ^ "The Great Green Wall: African Farmers Beat Back Drought and Climate Change with Trees". Scientific America. 28 January 2011. Dicapai pada 12 September 2021.
  67. ^ Searchinger, Tim; Adhya, Tapan K. (2014). "Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production". WRI.
  68. ^ "The Future of the Canals" (PDF). London Canal Museum. Diarkibkan daripada yang asal (PDF) pada 3 March 2016. Dicapai pada 8 September 2013.
  69. ^ "The Sixth Carbon Budget Surface Transport" (PDF). UKCCC. there is zero net cost to the economy of switching from cars to walking and cycling
  70. ^ "WG III contribution to the Sixth Assessment Report Chapter 8: Urban Systems and Other Settlements" (PDF). IPCC Intergovermental panel on Climate Change. Dicapai pada 26 April 2022.
  71. ^ WORKING GROUP III CONTRIBUTION TO THE IPCC SIXTH ASSESSMENT REPORT (AR6) Technical Summary (PDF). IPCC. m/s. 61–66. Dicapai pada 10 April 2022.
  72. ^ "Ten common myths about bike lanes – and why they're wrong". TheGuardian.com. 3 July 2019. Diarkibkan daripada yang asal pada 8 August 2020. Dicapai pada 5 September 2020.
  73. ^ "Climate Change 2022: Mitigation of Climate Change". www.ipcc.ch. Retrieved 2022-04-06.
  74. ^ "Energy Saving Trust: Home and the environment". Energy Saving Trust. Diarkibkan daripada yang asal pada 29 August 2008. Dicapai pada 26 August 2010.
  75. ^ Osborne, Hilary (2 August 2005). "Energy efficiency 'saves £350m a year'". Guardian Unlimited. London.
  76. ^ WORKING GROUP III CONTRIBUTION TO THE IPCC SIXTH ASSESSMENT REPORT (AR6) Technical Summary (PDF). IPCC. m/s. 71–76. Dicapai pada 11 April 2022.
  77. ^ WG III contribution to the Sixth Assessment Report , CHAPTER 9 (PDF). IPCC. 2022. m/s. 10, 49–50. Dicapai pada 24 April 2022.
  78. ^ Towards zero-emission efficient and resilient buildings GLOBAL STATUS REPORT 2016 (PDF). Global Alliance for Buildings and construction. 2016. m/s. 8. Dicapai pada 26 April 2022.
  79. ^ Rosenfeld, Arthur H.; Romm, Joseph J.; Akbari, Hashem; Lloyd, Alan C. (February–March 1997). "Technology Review". Painting the Town White – and Green. Massachusetts Institute of Technology. Diarkibkan daripada yang asal pada 8 November 2005. Dicapai pada 21 November 2005.
  80. ^ Committee on Science, Engineering, and Public Policy (1992). Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, D.C.: National Academy Press. ISBN 978-0-309-04386-1.CS1 maint: multiple names: authors list (link)
  81. ^ "One trillion trees - uniting the world to save forests and climate". World Economic Forum (dalam bahasa Inggeris). Dicapai pada 2020-10-08.
  82. ^ Letters (2020-02-21). "Backing the trillion tree campaign to combat climate crisis | Letter". The Guardian (dalam bahasa Inggeris). ISSN 0261-3077. Dicapai pada 2020-03-20.
  83. ^ Yoder, Kate. "Does planting trees actually help the climate? Here's what we know". Rewilding. Grist. Dicapai pada 15 May 2022.