Bahan api nuklear

Daripada Wikipedia, ensiklopedia bebas.
Jump to navigation Jump to search

Bahan api nuklear (Jawi: باهن اڤي نوكليار) ialah bahan yang digunakan dalam Loji kuasa nuklear untuk menghasilkan haba untuk menggerakkan turbin. Haba dihasilkan apabila bahan api menjalani pembelahan nuklear.

Proses Bahan Api Nuklear
Graf membandingkan nombor nukleon dengan tenaga pengikatan.
Replika teras reaktor penyelidikan di Institut Laue-Langevin.

Kebanyakkan bahan api nuklear mempunyai unsur berat boleh belah aktinida yang mampu untuk menjalani dan mengekalkan pembelahan nuklear. Tiga isotop utama untuk pembelahan ialah uranium-233, uranium-235 dan plutonium-239. Apabila nukleus atom-atom ini dilanggar oleh neutron perlahan, mereka membelah, menghasilkan dua nukleus anak dan dua atau tiga neutron. Neutron-neutron ini kemudian membelah lebih banyak nukleus. Ini menghasilkan Tindak balas rantai nuklear yang dikawal dalam reaktor nuklear, atau tanpa kawalan dalam senjata nuklear.

Proses yang terlibat dalam perlombongan, penulenan, penggunaan, pembuangan bahan api nuklear dikenali sebagai kitar bahan api nuklear.

Bukan semua bahan api nuklear menghasilkan tenaga daripada pembelahan nuklear; plutonium-238 dan beberapa unsur lain digunakan untuk menjana tenaga nuklear yang sedikit melalui reputan radioaktif dalam penjana termoelektrik radioisotop dan bateri atomik.

Bahan api nuklear mempunyai ketumpatan tenaga paling tinggi antara semua sumber tenaga praktikal.

Bahan Api Oksida[sunting | sunting sumber]

Untuk reaktor pembelahan, bahan api(biasanya berasaskan uranium) dibuat menggunakan logam oksida; logam oksida digunakan berbanding logam asli tersebut kerana takat lebur logam oksida lebih tinggi dari logam asli dan logam oksida tidak boleh terbakar, kerana berada dalam keadaan teroksida.

Pengaliran haba logam zirkonium dan uranium dioksida sebagai fungsi suhu

Uranium dioksida[sunting | sunting sumber]

Uranium dioksida ialah pepejal hitam yang bersifat semikonduktor. Ia dapat dihasilkan dengan memanaskan Uranil nitrat untuk membentuk UO3

Ini kemudian diubah dengan memanaskan bersama hidrogen untuk membentuk UO2. Ia juga dapat dihasilkan dari uranium heksaflorida diperkaya melalui tindakbalas dengan ammonia untuk membentuk pepejal bernama "ammonium diuranat", Bahan ini dipanaskan (dikalsin) untuk membentuk UO3 dan U3O8 yang kemudiannya diubah melalui pemanasan dengan hidrogen atau ammonia untuk membentuk UO2.[1]

UO2 dicampurkan dengan perekat(binder) organik dan ditekan menjadi pelet, pelet ini dibakar pada suhu yang lebih tinggi (dalam H2/Ar) untuk "mencair-mampatkan" pepejal. Tujuannya adalah untuk membentuk pepejal yang mempunyai sedikit rongga.

Kepengaliran haba uranium dioksida sangat rendah apabila dibandingkan dengan zirkonium, dan akan menurun apabila apabila suhu meningkat.

Pengakisan uranium dioksida dalam air dikawal oleh proses elektrokimia yang serupa dengan pengakisan bergalvani permukaan logam.

Oksida Campuran (MOx)[sunting | sunting sumber]

Oksida Campuran atau bahan api MOx, ialah campuran plutonium serta uranium semulajadi atau terpakai yang mempunyai sifat yang hampir sama (tetapi tidak serupa) dengan uranium diperkaya yang biasanya digunakan oleh reaktor nuklear. Bahan api MOx ialah alternatif kepada bahan api uranium diperkaya rendah (LEU) yang diguanakan dalam reaktor air ringan yang merupakan majoriti cara penjanaan Tenaga nuklear.

Terdapat kebimbangan yang teras MOx akan menghasilkan cabaran pelupusan yang baharu, walaupun MOx sendiri digunakan sebagai cara untuk melupus plutonium berlebihan dari transmutasi nuklear.

Pemprosesan semula Bahan api nuklear komersial untuk menghasilkan bahan api MOx telah dilakukan di Loji MOx Sellafield (England). Pada 2015, bahan api MOx dihasilkan di Perancis (Tapak Nuklear Marcoule), dan dalam kuantiti sedikit di Rusia, Jepun dan India. China bercadang untuk membina fast breeder reactor (see CEFR) dan pemprosesan semula.

Lihat Juga[sunting | sunting sumber]

p·b·s
Teknologi nuklear
Kejuruteraan nuklear Fizik nuklear | Keselamatan nuklear | Nukleus atom | Pelakuran nuklear | Pembelahan nuklear | Reaktor nuklear | Sinaran | Sinaran pengion
Bahan nuklear Bahan api nuklear | Bahan subur | Plutonium | Torium | Uranium | Uranium diperkaya | Uranium terpakai
Kuasa nuklear Kuasa lakuran | Loji kuasa lakuran inersia | Loji kuasa nuklear | Penjana termoelektrik radioisotop | Perejangan nuklear | Perkembangan tenaga masa depan | Reaktor air bertekanan |

Reaktor air didih | Reaktor air supergenting | Reaktor cepat kamiran | Reaktor dinginan gas cepat | Reaktor dinginan gas canggih | Reaktor dinginan logam cecair | Reaktor dinginan plumbum cepat | Reaktor garam leburan | Reaktor generasi IV | Reaktor lapisan kelikir | Reaktor Magnox | Reaktor neutron cepat | Reaktor pembiak cepat | Reaktor suhu amat tinggi | Roket terma nuklear | Sisa radioaktif

Perubatan nuklear Brakiterapi | Radiosurgeri | PET | Terapi proton | Terapi sinaran
Senjata nuklear Kesan letupan nuklear | Penghantaran senjata nuklear | Pengujian nuklear | Peperangan nuklear | Percambahan senjata nuklear | Perlumbaan senjata nuklear | Reka bentuk senjata nuklear | Sejarah senjata nuklear | Senarai negara bersenjata nuklear | Senarai ujian nuklear

Rujukan[sunting | sunting sumber]

  1. ^ R. Norris Shreve; Joseph Brink (1977). Chemical Process Industries (ed. 4th). m/s. 338–341. ASIN B000OFVCCG.