Mekanik klasik

Daripada Wikipedia, ensiklopedia bebas.
Lompat ke: pandu arah, cari
Unit terbitan SI dengan kg, m dan s
sesaran m
kelajuan m s−1
pecutan m s−2
sentakan m s−3
tenaga tentu m² s−2
kadar dos terserap m² s−3
momen inersia kg m²
momentum kg m s−1
momentum sudut kg m² s−1
daya kg m s−2
tork kg m² s−2
tenaga kg m² s−2
tenaga kg m² s−3
tekanan kg m−1 s−2
ketegangan permukaan kg s−2
kesinaran kg s−3
kelikatan kinematik m² s−1
kelikatan dinamik kg m−1 s

Mekanik klasik ialah satu cabang fizik yang mengkaji gerakan penentuan untuk ojek-objek. Bidang ini merangkumi berbagai-bagai cabang yang merupakan bentuk-bentuk khusus atau peringkat-peringkat perkembangan:

Kebanyakan daripada cabang-cabang di atas adalah sama dalam beberapa segi, baik tepat sama mahupun sama dalam keadaan-keadaan yang khas. Umpamanya, mekanik Lagrange adalah selalu tepat sama dengan mekanik Newton tetapi dalam bentuk yang paling mudah, mekanik Hamilton hanya sama dengan kedua-dua cabang tersebut jika tidak adanya daya geseran atau seretan. Dalam kes-kes yang lain, cabang mekanik yang tertulis di atas merupakan bentuk khusus yang sesuai: Mekanik Newton boleh digunakan untuk menyimpulkan mekanik statistik, dan mekanik statistik menghasilkan kesemua keputusan termodinamik secara langsung dan dengan lebih tepat.

Mekanik klasik tidak merangkumi sebarang bidang fizik yang melibatkan prinsip ketakpastian dan oleh itu, mekanik kuantum bukannya fizik "klasik", dan kekadang digelarkan fizik moden sebagai perbandingan. Sesetengah sumber juga mengecualikan apa yang digelarkan "fizik kerelatifan" daripada kategori itu. Bagaimanapun, sebilangan sumber memasukkan mekanik Einstein yang menurut pandangan mereka, merupakan mekanik klasik dalam bentuk yang paling maju dan paling tepat.


Sejarah[sunting | sunting sumber]

Rencana utama: Sejarah mekanik klasik

Orang-orang Yunani, khususnya Aristotle, merupakan orang-orang pertama yang mencadangkan kewujudan prinsip-prinsip abstrak yang menguasai alam semula jadi. Antara kalangan ini, salah satu ahli sains yang pertama ialah Galileo Galilei yang mungkin melaksanakan uji kaji termasyhur yang berkaitan dengan menggugurkan dua biji bola yang mempunyai jisim yang berbeza dari Menara Pisa yang condong. (Teori dan praktiknya menunjukkan bahawa kedua-dua bola itu sampai ke permukaan tanah pada waktu yang sama). Walaupun kenyataan uji kaji ini telah dipertikaikan, Galilei pernah menjalankan uji-uji kaji kuantitatif yang melibatkan penggolekan bola-bola pada satah condong; teori gerakan pecutannya yang telah didapati tepat ternyata berasal daripada keputusan uji-uji kaji ini.

Isaac Newton merupakan orang pertama yang mencadangkan tiga hukum gerakan (hukum inersia, hukum kedua yang tersebut di atas, dan hukum tindakan dan tindak balas), dan membuktikan bahawa hukum-hukum ini menguasai kedua-dua objek harian dan jasad cakerawala.

Newton dan kebanyakan ahli sains sezamannya, dengan kekecualian Christiaan Huygens yang terkenal, mengharapkan bahawa mekanik klasik akan dapat menerangkan semua entiti, termasuk cahaya (dalam bentuk optik geometri). Ketika Newton menemui cecincin Newton, penjelasan beliau sama sekali mengelakkan prinsip-prinsip gelombang dan lebih merupakan penjelasan untuk reputan kaon-kaon yang neutral, iaitu K0 dan palang K0. Dengan kata yang lain, beliau menganggap bahawa zarah-zarah cahaya diubahkan atau diuja oleh kaca, dan kemudiannya bergema.

Newton juga mengembangkan kalkulus yang diperlukan untuk melaksanakan pengiraan matematik yang terlibat dalam mekanik klasik. Bagaimanapun, adalah Gottfried Leibniz yang mengembangkan notasi terbitan dan kamilan yang masih digunakan pada hari ini. Selepas masa Newton, bidang mekanik klasik menjadi lebih abstrak dan melibatkan lebih banyak matematik.

Walaupun sebahagian besar mekanik klasik adalah serasi dengan teori-teori "fizik klasik" yang lain, seperti elektrodinamik dan termodinamik klasik, sesetengah kesulitan telah ditemui pada akhir abad ke-19 yang hanya dapat diselesaikan dengan fizik yang lebih moden. Apabila digabungkan dengan termodinamik klasik, mekanik klasik mengakibatkan paradoks Gibbs yang mana entrofi bukannya suatu kuantiti tertakrif rapi. Ketika uji-uji kaji mencapai peringkat atom, mekanik klasik gagal sama sekali untuk menerangkan perkara-perkara asas seperti aras tenaga dan saiz atom. Usaha-usaha untuk menyelesaikan masalah-masalah ini menyebabkan perkembangan mekanik kuantum. Serupa juga, tindakan elektromagnetisme klasik dan mekanik klasik yang berbeza di bawah transformasi halaju telah menyebabkan perkembangan teori kerelatifan.

Menjelang akhir abad ke-20, tempat mekanik klasik dalam bidang fizik tidak lagi merupakan sebuah teori yang berasingan. Bersama-sama dengan elektromagnetisme klasik, mekanik klasik telah menjadi terbenam dalam mekanik kuantum kerelatifan atau teori medan kuantum. [1]. Mekanik klasik merupakan had mekanik bukan kerelatifan serta bukan kuantum untuk zarah-zarah yang amat besar.

Petikan[sunting | sunting sumber]

  1. Muka surat 2-10 dalam Syarahan Feynman mengenai Fizik mengatakan: "Dari sudut pandangan praktik, sudah pun terdapat ketidaktentuan dalam mekanik klasik." Kala lampau yang digunakannya membayangkan bahawa fizik klasik tidak lagi merupakan asas.

Rujukan[sunting | sunting sumber]

  • Feynman, Richard (1996). Six Easy Pieces. Penerbitan Perseus. ISBN 0-201-40825-2. 
  • Feynman, Richard; Phillips, Richard (1998). Six Easy Pieces. Penerbitan Perseus. ISBN 0-201-32841-0. 
  • Feynman, Richard (1999). Lectures on Physics. Penerbitan Perseus. ISBN 0-7382-0092-1. 
  • Landau, L. D.; Lifshitz, E. M. (1972). Mechanics and Electrodynamics, Jilid 1. Syarikat Buku Franklin, Inc. ISBN 0-08-016739-X. 

Pautan luar[sunting | sunting sumber]


Subbidang am dalam Fizik

Elektromagnetisme | Fizik atom, molekul, dan optik | Fizik jirim termeluwap | Fizik zarah | Kerelatifan am | Kerelatifan khas | Mekanik klasik | Mekanik kontinuum | Mekanik kuantum | Mekanik statistik | Teori medan kuantum | Termodinamik